Lipids

, Volume 29, Issue 8, pp 541–545 | Cite as

Evidence that palmitic acid is absorbed assn-2 monoacylglycerol from human milk by breast-fed infants

  • Sheila M. Innis
  • Roger Dyer
  • Carolanne M. Nelson
Article

Abstract

Milk fatty acids consist of about 20–25% palmitic acid (16∶0), with about 70% of 16∶0 esterified to thesn-2 position of the milk triacylglycerols. Hydrolysis of dietary triacylglycerols by endogenous lipases producessn-2 monoacylglycerols and free fatty acids, which are absorbed, reesterified, and then secreted into plasma. Unesterified 16∶0 is not well absorbed and readily forms soaps with calcium in the intestine. The positioning of 16∶0 at thesn-2 position of milk triacylglycerols could explain the high coefficient of absorption of milk fat. However, the milk lipase, bile salt-stimulated lipase, has been suggested to complete the hydrolysis of milk fat to free fatty acids and glycerol. These studies determined whether 16∶0 is absorbed from human milk assn-2 monopalmitin by comparison of the plasma triacylglycerol total andsn-2 position fatty acid composition between breast-fed and formula-fed term gestation infants. The human milk and formula had 21.0 and 22.3% of 16∶0, respectively, with 54.2 and 4.8% 16∶0 in the fatty acids esterified to the 2 position. The plasma triacylglycerol total fatty acids had 26.0±0.6 and 26.2±0.6% of 16∶0, and thesn-2 position fatty acids had 23.3±3.3 and 7.4±0.7% of 16∶0 in the three-month-old exclusively breast-fed (n=17) and formula-fed (n=18) infants, respectively. Marked differences were found in the plasma total and the 2 position phospholipid percentage of 20∶4ω6, i.e., 11.6±0.3 and 6.9±0.6 (total), 17.7±1.4 and 9.7±0.6 (sn-2 position) and percentage of 22∶6ω3, 4.6±0.3 and 2.1±0.3 (total), 5.6±0.6 and 2.0±0.2 (sn-2 position) for the breast-fed and formula-fed infants, respectively. These studies provide convincing evidence that 16∶0 is absorbed from human milk assn-2 monoacyl-glycerol. The metabolic significance of the differences in positional distribution of fatty acids in the plasma lipids of breast-fed and formula-fed infants is not known.

Abbreviation

LCAT

lecithin:cholesterol acyltransferase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breckenridge, W.C., Marai, L., and Kuksis, A. (1969)Can. J. Biochem. 47, 761–769.PubMedCrossRefGoogle Scholar
  2. 2.
    Innis, S.M. (1992)J. Pediatrics 120, S51-S55.CrossRefGoogle Scholar
  3. 3.
    Martin, J.-C., Bougnoux, P., Antoine, J.-M., Lanson, M., and Couet, C. (1993)Lipids 28, 637–643.PubMedGoogle Scholar
  4. 4.
    Small, D.M. (1991)Ann. Rev. Nutr. 11, 413–434.CrossRefGoogle Scholar
  5. 5.
    Jensen, C., Buist, N.R.M., and Wilson, T. (1988)Am. J. Clin. Nutr. 43, 745–751.Google Scholar
  6. 6.
    Filer, I.J., Mattson, F.H., and Fomon, S.J. (1969)J. Nutr. 99, 293–298.PubMedGoogle Scholar
  7. 7.
    Pavero, C., Bernard, A., and Carler, H. (1992)J. Nutr. 122, 1672–1681.PubMedGoogle Scholar
  8. 8.
    Fomon, S.J., Ziegler, E.F., Thomas, L.N., Jensen, R.L., and Filer, Jr., L.J. (1970)Am. J. Clin. Nutr. 23, 1299–1313.PubMedGoogle Scholar
  9. 9.
    Tomarelli, R.M., Meyer, B.J., Weaber, J.R., and Bernhart, F.W. (1968)J. Nutr. 95, 583–590.PubMedGoogle Scholar
  10. 10.
    Bernbäck, S., Bläckberg, L., and Hernell, O. (1990)J. Clin. Invest. 85, 1221–1226.PubMedGoogle Scholar
  11. 11.
    Hall, B., and Muller, D.P.R. (1982)Pediatr. Res. 16, 251–255.PubMedCrossRefGoogle Scholar
  12. 12.
    Hernell, O., Bläckberg, L., and Bernbäck, S. (1982)Pediatr. Res. 16, 882–885.PubMedGoogle Scholar
  13. 13.
    Hernell, O., Bläckberg, L., and Bernbäck, S. (1989)Acta Paediatr. Scand. Suppl. 351, 57–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Mortimer, B.C., Kenrick, M.A., Holthouse D.J., Stick, R.V., and Redgrave, T.G. (1992)Biochim. Biophys. Acta 1127, 67–73.PubMedGoogle Scholar
  15. 15.
    Redgrave, T.J., Kodali, D.R., and Small, D.M. (1988)J. Biol. Chem. 263, 5118–5123.PubMedGoogle Scholar
  16. 16.
    Hrboticky, N., MacKinnon, M.J., Puterman, M.L., and Innis, S.M. (1990)Am. J. Clin. Nutr. 51, 173–182.PubMedGoogle Scholar
  17. 17.
    Innis, S.M., Quinlan, P., and Diersen-Schade, D. (1993)Am. J. Clin. Nutr. 51, 173–182.Google Scholar
  18. 18.
    Kuksis, A. (1984)Lipid Res. Methodology 10, 77–131.Google Scholar
  19. 19.
    Christie, W.W. (1986) inAnalysis of Oils and Fats (Hamilton, R.J., and Rossell, J.B., eds.) pp. 313–339, Elsevier Applied Science, London and New York.Google Scholar
  20. 20.
    Lepage, G., and Roy, C.C. (1986)J. Lipid Res. 27, 114–120.PubMedGoogle Scholar
  21. 21.
    Bottino, N.R., Vandenburg, G.A., and Reiser, R. (1967)Lipids 2, 489–493.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen, Q., Sternby, B., and Nillson, A. (1989)Biochim. Biophys. Acta 1004, 372–385.PubMedGoogle Scholar
  23. 23.
    Ponder, D.L., Innis, S.M., Benson, J.D., and Siegman, J.S. (1992)Ped. Res. 32, 638–688.Google Scholar
  24. 24.
    Putnam, J.C., Carlson, S.E., Devoe, P.W., and Barness, J.S. (1982)Am. J. Clin. Nutr. 36, 106–114.PubMedGoogle Scholar
  25. 25.
    Lehner, R., and Kuksis, A. (1992)Biochim. Biophys. Acta 1125, 171–179.PubMedGoogle Scholar
  26. 26.
    Pavero, C., Bernard, A., and Carler, H. (1992)J. Nutr. 122, 1672–1681.PubMedGoogle Scholar

Copyright information

© AOCS Press 1994

Authors and Affiliations

  • Sheila M. Innis
    • 1
  • Roger Dyer
    • 1
  • Carolanne M. Nelson
    • 1
  1. 1.Department of Paediatrics, University of British ColumbiaB.C. Research Institute for Child and Family HealthVancouverCanada

Personalised recommendations