Lipids

, Volume 21, Issue 4, pp 255–260 | Cite as

The peroxidizing effect of α-tocopherol on autoxidation of methyl linoleate in bulk phase

  • J. Terao
  • S. Matsushita
Article

Abstract

In order to understand the effect of α-tocopherol on the autoxidation mechanism of edible oil under storage conditions, methyl linoleate was allowed to autoxidize at 50 C in bulk phase without any radical initiator. The reaction was monitored by determining the production of four isomeric hydroperoxides (13-cis,trans; 13-trans,trans; 9-cis,trans; 9-trans,trans) by high performance liquid chromatographic analysis after reduction. In the absence of α-tocopherol, the rate of autoxidation depended on the sample size, and the duration of the induction period was affected by the initial level of hydroperoxides. However, the distribution of c-t and t-t hydroperoxide isomers remained constant during the propagation period regardless of the sample size. The addition of α-tocopherol at 0.1 and 1.0% caused a linear increase in the amount of hydroperoxides and elevated the distribution of the c-t isomers. The rate of hydroperoxidation appeared to be governed by the initial concentration of α-tocopherol rather than the sample size or the initial hydroperoxide level. This peroxidizing effect of α-tocopherol was suppressed by the presence of ascorbyl palmitate. A mechanism in which chromanoxy radical participates is proposed for the effect of α-tocopherol on lipid autoxidation in bulk phase. It is therefore suggested that α-tocopherol at high concentrations influences the mechanism of autoxidation of edible oil.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frankel, E.N. (1980) inAutoxidation in Food and Biological Systems (Simic, M.G., and Karel, M., eds.) pp. 141–170, Plenum Press, New York.Google Scholar
  2. 2.
    Chan, H.W.-S., and Levett, G. (1977)Lipids 12, 99–104.PubMedCrossRefGoogle Scholar
  3. 3.
    Chan, H.W.-S., Levett, G., and Matthew, J.A. (1979)Chem. Phys. Lipids 24, 245–256.CrossRefGoogle Scholar
  4. 4.
    Porter, N.A., Weber, B.A., Weenen, H., and Khan, J.A. (1980)J. Am. Chem. Soc. 102, 5597–5601.CrossRefGoogle Scholar
  5. 5.
    Porter, N.A., Lehman, L.S., Weder, B.A., and Smith, K.J. (1981)J. Am. Chem. Soc. 103, 6447–6455.CrossRefGoogle Scholar
  6. 6.
    Weenen, H., and Porter, N.A. (1982)J. Am. Chem. Soc., 104, 5216–5221.CrossRefGoogle Scholar
  7. 7.
    Peers, K.E., Coxon, D.T., and Chan, H.W.-S. (1981)J. Sci. Food Agric. 32, 898–904.CrossRefGoogle Scholar
  8. 8.
    Peers, K.E., and Coxon, D.T. (1983)Chem. Phys. Lipids 32, 49–56.CrossRefGoogle Scholar
  9. 9.
    Bauernfeind, J. (1980) inVitamin E (Machlin, L.J., ed.) pp. 99–167, Marcel Dekker, New York.Google Scholar
  10. 10.
    Lundberg, W.O. (1962) inAutoxidation and Antioxidants (Lundberg, W.O., ed.) Vol. II, pp. 451–476, Interscience, New York.Google Scholar
  11. 11.
    Carrol, K.K. (1961)J. Lipid Res. 2, 135–141.Google Scholar
  12. 12.
    Peers, K.E., Coxon, D.T., and Chan, W.-S. (1984)J. Sci. Food Agric. 35, 813–817 (1984).CrossRefGoogle Scholar
  13. 13.
    Kwon, T.W., Snyder, H.E., and Brown, H.G. (1984)J. Am. Oil Chem. Soc. 61, 1843–1846.Google Scholar
  14. 14.
    Hicks, M., and Gebicki, J.M. (1981)Arch. Biochem. Biophys. 210, 56–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Lundberg, W.O. (1962) inLipids and Their Oxidation (Schultz, H.W., ed.) pp. 31–50, AVI Publishing, Westport, CT.Google Scholar
  16. 16.
    Uri, N. (1962) inAutoxidation and Antioxidants (Lundberg, W.O., ed.) Vol. I, pp. 133–169, Interscience, New York.Google Scholar
  17. 17.
    Terao, J., and Matsushita, S. (1977)Agric. Biol. Chem. 41, 2401–2405.Google Scholar
  18. 18.
    Burton, G.W., and Ingold, K.U. (1981)J. Am. Chem. Soc. 103, 6472–6477.CrossRefGoogle Scholar
  19. 19.
    Niki, E., Saito, T., Kawakami, A., and Kamiya, Y. (1984)J. Biol. Chem. 259, 4177–4182.PubMedGoogle Scholar
  20. 20.
    Lea, C.H., and Ward, R.J. (1959)J. Sci. Food Agric. 10, 537–548.CrossRefGoogle Scholar
  21. 21.
    Lea, C.H. (1960)J. Sci. Food Agric. 11, 212–218.CrossRefGoogle Scholar
  22. 22.
    Ozawa, Y., Ikenoya, S., Nakamura, S., and Hidaka, Y. (1980)Eiyo to Syokuryo 33, 393–398.Google Scholar
  23. 23.
    Ikeda, N., and Fukuzumi, K. (1977)Yukagaku 26, 343–349.Google Scholar
  24. 24.
    Witting, L.A. (1969)Arch. Biochem. Biophys. 129, 142–151.PubMedCrossRefGoogle Scholar
  25. 25.
    Wu, G-S., Stein, R., and Mead, J.F. (1979)Lipids 14, 644–650.CrossRefGoogle Scholar
  26. 26.
    Cillard, J., Cillard, P., Cormier, M., and Girre, L. (1980)J. Am. Oil Chem. Soc. 57, 252–255.Google Scholar
  27. 27.
    Cillard, J., Cillard, P., and Cormier, M. (1980)J. Am. Oil Chem. Soc. 57, 256–261.Google Scholar
  28. 28.
    Koskas, J.P., Cillard, J., and Cillard, P. (1984)J. Am. Oil Chem. Soc. 61, 466–469.Google Scholar
  29. 29.
    Mahoney, L.R., and Ferris, F.C. (1963)J. Am. Chem. Soc. 85, 2345–2346.CrossRefGoogle Scholar
  30. 30.
    Packer, J.E., Slater, T.F., and Willson, R.L. (1979)Nature 278, 737–738.PubMedCrossRefGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1986

Authors and Affiliations

  • J. Terao
    • 1
  • S. Matsushita
    • 1
  1. 1.Research Institute for Food ScienceKyoto UniversityKyotoJapan

Personalised recommendations