, 26:421 | Cite as

Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease

  • M. Söderberg
  • C. Edlund
  • K. Kristensson
  • G. Dallner


The two major phospholipid classes, namely, phosphatidylethanolamines (PE) and phosphatidylcholines (PC), were studied in four different regions of human brain,i.e., in frontal gray matter, frontal white matter, hippocampus and in pons. The fatty acid (FA) compositions of these phospholipids were found to be specific for the different regions. PC contains mostly saturated and 18∶1 FA, while PE is rich in polyunsaturated FA. Aging has no influence on the FA compositions, while in Alzheimer’s disease (AD) PE is modified in all four regions, particularly in frontal gray matter and in hippocampus. The abundance of the major monounsaturated FA of PE, 18∶1, is not significantly altered in Alzheimer’s disease, but there is a substantial increase in the relative amounts of the saturated components 14∶0, 16∶0 and 18∶0. This is paralleled by a decrease in the polyunsaturated FA 20∶4, 22∶4 and 22∶6. It is not clear whether the changes observed are specific for AD. Changes in saturated/polyunsaturated FA ratio are likely to influence cellular function, which in turn may cause certain neural deficiencies. The findings do not support the hypothesis that AD reflects an accelerated aging process.



Alzheimer’s disease


fatty acids


gasliquid chromatography


nicotinamide adenine dinucleotide








polyunsaturated fatty acids


thin-layer chromatography


  1. 1.
    Svennerholm, L. (1963)J. Neurochem. 10, 613–623.PubMedCrossRefGoogle Scholar
  2. 2.
    Söderberg, M., Edlund, C., Kristensson, K., and Dallner, G. (1990)J. Neurochem. 54, 415–423.PubMedCrossRefGoogle Scholar
  3. 3.
    van Dijck, P.W.M., de Kruijff, B., van Deenen, L.L.M., de Jier, J., and Demel, R.M. (1976)Biochim. Biophys. Acta 455, 576–587.PubMedCrossRefGoogle Scholar
  4. 4.
    Valtersson, C., van Duyn, G., Verkleij, A.J., Chojnacki, T., de Kruijff, B., and Dallner, G. (1985)J. Biol. Chem. 260, 2742–2751.PubMedGoogle Scholar
  5. 5.
    Horrocks, L.A., Van Rollins, M., and Yates, A.J. (1981) inThe Molecular Basis of Neuropathology (Davison, A.N., and Thompson, R.H.S., eds.) pp. 601–630, Edward Arnold, London.Google Scholar
  6. 6.
    Stokes, C.E., and Hawthorne, J.N. (1987)J. Neurochem. 48, 1018–1021.PubMedCrossRefGoogle Scholar
  7. 7.
    Ellison, D.W., Beal, M.F., and Martin, J.B. (1987)Brain Research 417, 389–392.PubMedCrossRefGoogle Scholar
  8. 8.
    Bowen, D.M., Smith, C.B., and Davison, A.N. (1973)Brain 96, 849–856.PubMedGoogle Scholar
  9. 9.
    Brookshank, B.W.L., and Martinez, M. (1989)Mol. Chem. Neuropathol. 11, 157–185.CrossRefGoogle Scholar
  10. 10.
    Khachaturian, Z.S. (1985)Arch. Neurol. 42, 1097–1104.PubMedGoogle Scholar
  11. 11.
    Morrison, W.R., and Smith, L.M. (1964)J. Lipid Res. 5, 600–608.PubMedGoogle Scholar
  12. 12.
    Cullis, P.R., and Hope, M.J. (1985) inBiochemistry of Lipids and Membranes (Vance, D.E., and Vance, J.E., eds.) pp. 25–72, Benjamin/Cummings, Menlo Park.Google Scholar
  13. 13.
    Vanderkooi, G. (1974)Biochim. Biophys. Acta 344, 307–345.PubMedGoogle Scholar
  14. 14.
    Hidalgo, C., and Ikemoto, N. (1977)J. Biol. Chem. 252, 8446–8454.PubMedGoogle Scholar
  15. 15.
    Stier, A., and Sackmann, E. (1973)Biochim. Biophys. Acta 311, 400–408.PubMedCrossRefGoogle Scholar
  16. 16.
    Valtersson, C., and Dallner, G. (1982)J. Lipid Res. 23, 868–876.PubMedGoogle Scholar
  17. 17.
    Kishimoto, Y., Agranoff, B.W., Radin, N.S., and Burton, R.M. (1969)J. Neurochem. 16, 397–404.PubMedCrossRefGoogle Scholar
  18. 18.
    Pullarkat, R.K., and Rena, H. (1978)J. Neurochem. 31, 707–712.PubMedCrossRefGoogle Scholar
  19. 19.
    Gottfries, C.G. (1986) inProgress in Brain Research (Swaab, D.F., Fliers, E., Mirmiran, M., Van Gool, W.A., and Van Haren, F., eds.) Vol. 70, pp. 133–139, Elsevier, Amsterdam.Google Scholar
  20. 20.
    Jeffcoat, R. (1979)Essays Biochem. 15, 1–36.PubMedGoogle Scholar
  21. 21.
    Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M.J., Setlow, B., and Redline, R. (1974)Proc. Natl. Acad. Sci. USA 71, 4565–4569.PubMedCrossRefGoogle Scholar
  22. 22.
    Dhopeshwarkar, G.A., and Mead, J.F. (1973)Adv. Lipid Res. 11, 109–142.PubMedGoogle Scholar
  23. 23.
    Scheibel, M.E., and Scheibel, A.B. (1975) inClinical, Morphologic, and Neurochemical Aspects in the Aging Central Nervous System (Brody, H., Harman, D., and Ordy, J.M., eds.) Vol. 1, pp. 11–37, Raven Press, New York.Google Scholar
  24. 24.
    Cotman, C., Blank, M.L., Moehl, A., and Snyder, F. (1969)Biochemistry 8, 4606–4612.PubMedCrossRefGoogle Scholar
  25. 25.
    Masliah, E., Terry, R.D., DeTeresa, R.M., and Hansen, L.A. (1989)Neurosci. Lett. 103, 234–239.PubMedCrossRefGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1991

Authors and Affiliations

  • M. Söderberg
    • 1
  • C. Edlund
    • 1
  • K. Kristensson
    • 1
  • G. Dallner
    • 1
  1. 1.Division of Medical Cell and Neurobiology, Clinical Research CenterHuddinge University Hospital, Karolinska InstitutetHuddingeSweden

Personalised recommendations