, Volume 28, Issue 7, pp 637–643 | Cite as

Triacylglycerol structure of human colostrum and mature milk

  • Jean-Charles Martin
  • Philippe Bougnoux
  • Jean-Michel Antoine
  • Monique Lanson
  • Charles Couet


Because triacylglycerol (TAG) structure influences the metabolic fate of its component fatty acids, we have examined human colostrum and mature milk TAG with particular attention to the location of the very long chain polyunsaturated fatty acid on the glycerol backbone. The analysis was based on the formation of various diacylglycerol species from human milk TAG upon chemical (Grignard degradation) or enzymatic degradation. The structure of the TAG was subsequently deduced from data obtained by gas chromatographic analysis of the fatty acid methyl esters in the diacylglycerol subfractions. The highly specific TAG structure observed was identical in mature milk and colostrum. The three major fatty acids (oleic, palmitic and linoleic acids) each showed a specific preference for a particular position within milk TAG: oleic acid for thesn-1 position, palmitic acid for thesn-2 position and linoleic acid for thesn-3 position. Linoleic and α-linolenic acids exhibited the same pattern of distribution and they were both found primarily in thesn-3 (50%) andsn-1 (30%) positions. Their longer chain analogs, arachidonic and docosahexaenoic acids, were located in thesn-2 andsn-3 positions. These results show that polyunsaturated fatty acids are distributed within the TAG molecule of human milk in a highly specific fashion, and that in the first month of lactation the maturation of the mammary gland does not affect the milk TAG structure.



butylated hydroxytoluene


docosahexaenoic acid




polyunsaturated fatty acids




thin-layer chromatography


very long chain polyunsaturated fatty acids


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Academy of Pediatrics (1982)Pediatrics 69, 654–661.Google Scholar
  2. 2.
    Clandinin, M.T., Chappell, J.E., and Van Aerde, J.E.E. (1989)Acta Paediatr. Scand. Suppl. 351, 63–71.PubMedGoogle Scholar
  3. 3.
    Crawford, M.A. (1992)Nutr. Rev. 50, 3–11.PubMedCrossRefGoogle Scholar
  4. 4.
    Salem, N., Kim, H.-Y., and Yergey, J.A. (1986) inHealth Effects of Polyunsaturated Fatty Acids in Seafoods (Simopoulos, A.P., Kifer, R.R., and Martin, R.E., eds.) pp. 263–317, Academic Press, New York.Google Scholar
  5. 5.
    Uauy, R., Birch, E., Birch, D., and Peirano, P. (1992)J. Pediatr. 120, S168-S180.PubMedCrossRefGoogle Scholar
  6. 6.
    Caroll, K.K. (1989)J. Nutr. 119, 1810–1813.Google Scholar
  7. 7.
    ESPGAN Committee on Nutrition (1991)Acta Paediatr. Scand. 80, 887–896.Google Scholar
  8. 8.
    Bottino, N.R., Vandenburg, G.A., and Reiser, R. (1967)Lipids 2, 489–493.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen, Q., Sternby, B., and Nilsson, A. (1989)Biochim. Biophys. Acta 1004, 372–385.PubMedGoogle Scholar
  10. 10.
    Yang, L.Y., Kuksis, A., and Myher, J.J. (1989)Biochem. Cell Biol. 67, 192–204.PubMedGoogle Scholar
  11. 11.
    Mattson, F.H., Nolen, G.A., and Webb, M.R. (1979)J. Nutr. 109, 1682–1687.PubMedGoogle Scholar
  12. 12.
    Carey, M.C., Small, D.M., and Bliss, C.M. (1983)Ann. Rev. Physiol. 45, 651–677.CrossRefGoogle Scholar
  13. 13.
    Filer, L.J., Mattson, F.H., and Fomon, S.J. (1969)J. Nutr. 99, 293–298.PubMedGoogle Scholar
  14. 14.
    Tomarelli, R.M., Meyer, B.J., Weaber, J.R., and Bernhart, F.W. (1968)J. Nutr. 95, 583–590.PubMedGoogle Scholar
  15. 15.
    Mattson, F.H., and Volpenhein, R.A. (1964)J. Biol. Chem. 239, 2772–2777.PubMedGoogle Scholar
  16. 16.
    Small, D.M. (1991)Ann. Rev. Nutr. 11, 413–434.CrossRefGoogle Scholar
  17. 17.
    Myher, J.J., Kuksis, A., Breckenridge, W.C., McGuire, V., and Little, J.A. (1985)Lipids 20, 90–101.PubMedCrossRefGoogle Scholar
  18. 18.
    Chernenko, G.A., Barrowman, J.A., Kean, K.T., Herzberg, G.R., and Keough, K.M.W. (1989)Biochim. Biophys. Acta 1004, 95–102.PubMedGoogle Scholar
  19. 19.
    Nilsson, A., Hjelte, L., and Strandvik, B. (1992)J. Lipid Res. 33, 1295–1305.PubMedGoogle Scholar
  20. 20.
    Scow, R.O., and Egelrud, T. (1976)Biochim. Biophys. Acta 431, 538–549.PubMedGoogle Scholar
  21. 21.
    Paltauf, F., Esfandi, F., and Holasek, A. (1974)Fed. Eur. Biol. Sci. 40, 119–123.Google Scholar
  22. 22.
    Redgrave, T.G., Kodali, D.R., and Small, D.M. (1988)J. Biol. Chem. 263, 5118–5123.PubMedGoogle Scholar
  23. 23.
    Kritchevsky, D. (1988)Nutr. Rev. 46, 177–181.PubMedCrossRefGoogle Scholar
  24. 24.
    Ackman, R.G. (1988)Atherosclerosis 70, 171–173.PubMedCrossRefGoogle Scholar
  25. 25.
    Nelson, G.J., and Ackman, R.G. (1988)Lipids 23, 1005–1014.PubMedCrossRefGoogle Scholar
  26. 26.
    Pita, M.L., Morales, J., Sanchez-Pozo, A., Martinez-Valverde, J.A., and Gil, A. (1985)Ann. Nutr. Metab. 29, 366–373.PubMedCrossRefGoogle Scholar
  27. 27.
    Harzer, G., Haug, M., Dieterich, I., and Gentner, P.R. (1983)Am. J. Clin. Nutr. 37, 612–621.PubMedGoogle Scholar
  28. 28.
    Gibson, R.A., and Kneebone, G.M. (1981)Am. J. Clin. Nutr. 34, 252–257.PubMedGoogle Scholar
  29. 29.
    Martin, J.-C., Niyongabo, T., Moreau, L., Antoine, J.-M., Lanson, M., Berger, C., Lamisse, F., Bougnoux, P., and Couet, C. (1991)Am. J. Clin. Nutr. 54, 829–835.PubMedGoogle Scholar
  30. 30.
    Morrison, W.R., and Smith, L.M. (1964)J. Lipid Res. 5, 600–608.PubMedGoogle Scholar
  31. 31.
    Myher, J.J., and Kuksis, A. (1979)Can. J. Biochem. 57, 117–124.PubMedGoogle Scholar
  32. 32.
    Myher, J.J., Kuksis, A., and Yang, L.Y. (1990)Biochem. Cell Biol. 68, 336–344.CrossRefGoogle Scholar
  33. 33.
    Christie, W.W., and Moore, J.H. (1969)Biochim. Biophys. Acta 176, 445–452.PubMedGoogle Scholar
  34. 34.
    Yurkowski, M., and Brockerhoff, H. (1966)Biochim. Biophys. Acta 125, 55–59.PubMedGoogle Scholar
  35. 35.
    Lawson, L.D., and Hughes, B.G. (1988)Lipids 23, 313–317.CrossRefGoogle Scholar
  36. 36.
    Ekström, B., Nilsson, A., and Akesson, B. (1989)Eur. J. Clin. Invest. 19, 259–264.PubMedGoogle Scholar
  37. 37.
    Whestone, H.D., Hurley, W.L., and Davis, C.L. (1986)Comp. Biochem. Physiol. 85 B, 687–692.Google Scholar
  38. 38.
    Ransac, S., Rogalska, E., Gargouri, Y., Deveer, A.M.T.J., Paltauf, F., de Haas, G.H., and Verger, R. (1990)J. Biol. Chem. 265, 20263–20270.PubMedGoogle Scholar
  39. 39.
    Iverson, S.J., Kirk, C.L., Hamosh, M., and Newsome, J. (1991)Biochim. Biophys. Acta 1083, 109–119.PubMedGoogle Scholar
  40. 40.
    Jensen, R.G., Clark, R.M., deJong, F.A., Hamosh, M., Liao, T.H., and Mehta, N.R. (1982)J. Pediat. Gastroenterol. Nutr. 1, 243–255.CrossRefGoogle Scholar
  41. 41.
    Bernbäck, S., Bläckberg, L., and Hernell, O. (1990)J. Clin. Invest. 85, 1221–1226.PubMedCrossRefGoogle Scholar
  42. 42.
    Hernell, O., and Bläckberg, L. (1982)Pediatr. Res. 16, 882–885.PubMedGoogle Scholar
  43. 43.
    Bernbäck, S., Bläckberg, L., and Hernell, O. (1989)Biochim. Biophys. Acta 1001, 286–293.PubMedGoogle Scholar
  44. 44.
    Iverson, S.J., Sampugna, J., and Oftedal, O.T. (1992)Lipids 27, 870–878.PubMedGoogle Scholar
  45. 45.
    Iverson, S.J., and Hamosh, M. (1992)Pediatr. Res. 31 (Part 2), 108A.Google Scholar
  46. 46.
    Breckenridge, W.C., Marai, L., and Kuksis, A. (1969)Can. J. Biochem. 47, 761–769.PubMedCrossRefGoogle Scholar
  47. 47.
    Christie, W.W., and Clapperton, J.L. (1982)J. Soc. Dairy Technol. 35, 22–24.Google Scholar
  48. 48.
    Smith, L.M., and Hardjo, S. (1974)Lipids 9, 713–716.PubMedCrossRefGoogle Scholar
  49. 49.
    Brockerhoff, H., Hoyle, R.J., and Wolmark, N. (1966)Biochim. Biophys. Acta 116, 67–72.PubMedGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1993

Authors and Affiliations

  • Jean-Charles Martin
    • 1
  • Philippe Bougnoux
    • 2
  • Jean-Michel Antoine
    • 3
  • Monique Lanson
    • 2
  • Charles Couet
    • 1
  1. 1.Laboratoire de Nutrition et Clinique Médicale A, Faculté de MédecineUniversité François RabelaisTours, cedexFrance
  2. 2.Laboratoire de Biologie des TumeursFaculté de MédcineTours
  3. 3.Direction ScientifiqueBSNParis

Personalised recommendations