, Volume 30, Issue 4, pp 277–290 | Cite as

Mechanisms of free radical oxidation of unsaturated lipids

  • Ned A. Porter
  • Sarah E. Caldwell
  • Karen A. Mills


The primary producs formed from the autoxidation of lipids can be understood based upon a mechanism that involves five different reaction types. These reactions are: reaction of a carbon radical and molecular oxygen, atom transfer of a hydrogen from substrate to the chain carrying peroxyl, fragmentation of the chain carrying peroxyl to give oxygen and a carbon radical, rearrangement of the peroxyl, and cyclization of the peroxyl. The mechanisms of these primary reaction steps has been the focus of extensive research over the past fifty years, and the current level of understanding of these transformations is the subject of this review.


Hydroperoxide Oleate Linoleate Methyl Oleate Methyl Linoleate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



gas chromatography/mass spectrometry


high-pressure liquid chromatography


nuclear magnetic resonance


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lavoisier, A.L. (1789)Elements of Chemistry (translasted by Robert Kerr) pp. 107–108, Dover Publications, 1965, New York.Google Scholar
  2. 2.
    Mayo, F.R. (1986)J. Chem. Ed. 63, 97–98.Google Scholar
  3. 3.
    Walling, C. (1986)J. Chem. Ed. 63, 99–101.Google Scholar
  4. 4.
    Walling, C. (1987)Chem. Br., 23, 769–770.Google Scholar
  5. 5.
    Porter, N.A. (1986)Acc. Chem. Res. 19, 262–268.CrossRefGoogle Scholar
  6. 6.
    Porter, N.A. (1990)Membrane Lipid Oxidation (Vigo-Pelfrey, C., ed.) Vol. I, pp. 33–62, CRC Press, Boca Raton.Google Scholar
  7. 7.
    Marnett, L.J. (1987) inAnticarcinogenesis and Radiation Protection (Ceruti, P.A., Nygard, O.F., and Simic, M.G., eds.) pp. 71–80, Plenum Press, New York.Google Scholar
  8. 8.
    Gershon, D. (1988) inReactive Oxygen Species in Chemistry, Biology, and Medicine (Quintanilla, A., ed.) pp. 211–219, Plenum Press, New York.Google Scholar
  9. 9.
    Cheeseman, K.H., and Slater, T.F. (1993)British Med. Bull. 9, 481–493.Google Scholar
  10. 10.
    Gardner, H.W. (1983) inXenobiotics in Foods and Feeds, 234 (Finley, J.W., and Schwass, D.W., eds.) pp. 63–98, American Chemical Society Symposium Series, Washington, D.C.Google Scholar
  11. 11.
    Porter, N.A. (1985) inChemical Changes in Food During Processing (Richardson, T., and Finley, J.W., eds.) pp. 73–78, AVI Publishing Co., Inc., Westport.Google Scholar
  12. 12.
    Hessler, J.R., Morel, D.W., Lewis, L.J., and Chisholm, G.M. (1983)Arteriosclerosis 3, 215–222.PubMedGoogle Scholar
  13. 13.
    Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., and Steinberg, D. (1984)Proc. Natl. Acad. Sci. USA 81, 3883–3887.PubMedCrossRefGoogle Scholar
  14. 14.
    Davies, A.G., Griller, D., Ingold, K.U., Lindsay, D.A., and Walton, J.C. (1981)J. Chem. Soc. Perkin Trans. II, 633–641.Google Scholar
  15. 15.
    Howard, J.A. (1973) inFree Radicals (Kochi, J.K., ed.) Vol. II, pp. 15–31, John Wiley and Sons, New York.Google Scholar
  16. 16.
    Nonhebel, D.C., and Walton, J.C. (1984) inFree Radical Chemistry, pp. 393–417, Cambridge University Press, London.Google Scholar
  17. 17.
    Howard, J.A. (1972) inAdvances in Free Radical Chemistry, Vol. IV, pp. 75–138, Academic Press, New York.Google Scholar
  18. 18.
    Farmer, E.H., and Sutton, D.A. (1943)J. Chem. Soc., 119–122.Google Scholar
  19. 19.
    Farmer, E.H., Koch, H.P., and Sutton, D.A. (1943),J. Chem. Soc., 541–547.Google Scholar
  20. 20.
    Bickford, W.G., Fisher, G.S., Kyame, L., and Swift, C.E. (1948)J. Am. Oil Chem. Soc. 24, 254–257.Google Scholar
  21. 21.
    Ross, J., Gebhart, A.I., and Gerecht, J.F. (1946)J. Am. Chem. Soc. 68, 1373–1376.CrossRefGoogle Scholar
  22. 22.
    Frankel, E.N. (1980) inAutoxidation in Food and Biological Systems (Simic, M., and Karel, M., eds.) pp. 141–183, Plenum Press, New York.Google Scholar
  23. 23.
    Frankel, E.N., Neff, W.E., and Rohwedder, W.K. (1977)Lipids 12, 901–907.PubMedCrossRefGoogle Scholar
  24. 24.
    Frankel, E.N., Garwood, R.F., Khambay, B.P., Moss, G.P., and Weedon, B.C. (1984)J. Chem. Soc. Perkin Trans. I, 2233–2240.CrossRefGoogle Scholar
  25. 25.
    Pritzkow, W., Radeolia, R., and Schmidt-Renner, W. (1979)J. Prakt. Chem. 321, 813–826.CrossRefGoogle Scholar
  26. 26.
    Porter, N.A., Mills, K.A., and Carter, R.L. (1994)J. Am. Chem. Soc. 116, 6690–6696.CrossRefGoogle Scholar
  27. 27.
    Courtneidge, J.L., and Bush, M. (1992)J. Chem. Soc. Perkin Trans. I, 1531–1538.CrossRefGoogle Scholar
  28. 28.
    Courtneidge, J.L., Bush, M., and Loh, L.-S. (1992)J. Chem. Soc. Perkin Trans. I, 1539–1548.CrossRefGoogle Scholar
  29. 29.
    Courtneidge, J.L. (1992)J. Chem. Soc. Chem. Commun., 1270–1272.Google Scholar
  30. 30.
    Howard, J.A., Schwalm, W.J., and Ingold, K.U. (1968)Adv. Chem. Ser. 75, 6–23.Google Scholar
  31. 31.
    Middleton, B.S., and Ingold, K.U. (1967)Can. J. Chem. 45, 191–194.CrossRefGoogle Scholar
  32. 32.
    Chenier, J.H., and Howard, J.A. (1975)Can. J. Chem. 53, 623–627.CrossRefGoogle Scholar
  33. 33.
    Howard, J.A. (1984)Israel J. Chem. 24, 33–37.Google Scholar
  34. 34.
    Thomas, J.R., and Tolman, C.A. (1962)J. Am. Chem. Soc. 84, 2079–2080.CrossRefGoogle Scholar
  35. 35.
    Thomas, J.R. (1967)J. Am. Chem. Soc. 84, 4872–4875.CrossRefGoogle Scholar
  36. 36.
    Saebo, S., Beckwith, A.L.J., and Radom, L. (1984)J. Am. Chem. Soc. 106, 5119–1522.CrossRefGoogle Scholar
  37. 37.
    Lindsay, D.A., Lusztyk, J., and Ingold, K.U. (1984)J. Am. Chem. Soc. 106, 7087–7093.CrossRefGoogle Scholar
  38. 38.
    Barclay, L.R.C., Lusztyk, J., and Ingold, K.U. (1984)J. Am. Chem. Soc. 106, 1793–1796.CrossRefGoogle Scholar
  39. 39.
    Crich, D., and Filzen, G.F. (1993)Tetrahedron Lett. 34, 3225–3229.CrossRefGoogle Scholar
  40. 40.
    Frimer, A.A. (1979)Chem. Rev. 79, 359–387.CrossRefGoogle Scholar
  41. 41.
    Brill, W.F. (1984)J. Chem. Soc. Perkin Trans. II, 621–627.Google Scholar
  42. 42.
    Schenck, G.O. (1957)Angew. Chem. 69, 579–599.Google Scholar
  43. 43.
    Schenck, G.O., Neumuller, O.A., and Eisfeld, K.C. (1958)Angew. Chem. 70, p. 595.Google Scholar
  44. 44.
    Smith, L.L. (1981)Cholesterol Autoxidation, Plenum Press, New York.Google Scholar
  45. 45.
    Beckwith, A.L., Davies, A.G., Davison, I.G., Macoll, A., and Mruzek, M.H. (1989)J. Chem. Soc. Perkin Trans. II, 815–824.Google Scholar
  46. 46.
    Davies, A.G., and Davison, I.G. (1989)J. Chem. Soc. Perkin Trans. II, 825–830.Google Scholar
  47. 47.
    Brill, W.F. (1965)J. Am. Chem. Soc. 87, 3286–3287.CrossRefGoogle Scholar
  48. 48.
    Brill, W.F. (1968)Adv. Chem. Ser. 75, 93–101.CrossRefGoogle Scholar
  49. 49.
    Porter, N.A., and Zuraw, P. (1985)J. Chem. Soc. Chem. Commun., 1472–1473.Google Scholar
  50. 50.
    Boyd, S.L., Boyd, R.J., Shi, Z., Barclay, R.C., and Porter, N.A. (1993)J. Am. Chem. Soc. 115, 687–693.CrossRefGoogle Scholar
  51. 51.
    Porter, N.A., Kaplan, J.K., and Dussault, P.H. (1990)J. Am. Chem. Soc. 112, 1266–1267.CrossRefGoogle Scholar
  52. 52.
    Mills, K.A., Caldwell, S.E., Dubay, G.R., and Porter, N.A. (1992),J. Am. Chem. Soc. 114, 9689–9691.CrossRefGoogle Scholar
  53. 53.
    Porter, N.A., Mills, K.A., Caldwell, S.E., and Dubay, G.R. (1994)J. Am. Chem. Soc. 116, 6697–6705.CrossRefGoogle Scholar
  54. 54.
    Chan, H.W.S., Levett, G., and Matthew, J.A. (1979)Chem. Phys. Lipids 24, 245–256.CrossRefGoogle Scholar
  55. 55.
    Teng, J.I., and Smith, L.L. (1985)J. Chromatogr. 350, 445–451.PubMedCrossRefGoogle Scholar
  56. 56.
    Porter, N.A., and Wujek, D.G. (1984)J. Am. Chem. Soc. 106, 2626–2629.CrossRefGoogle Scholar
  57. 57.
    Porter, N.A., Lehman, L.S., Weber, B.A., and Smith, K.J. (1981)J. Am. Chem. Soc. 103, 6447–6455.CrossRefGoogle Scholar
  58. 58.
    Iliou, J.P., Jourdheuil, D., Robin, F. Serkiz, B., Guivarch, P., Lolland, J.P., and Vilaine, J.P. (1992)Lipids 27, 959–967.PubMedGoogle Scholar
  59. 59.
    Brash, A.R., Porter, J.D., and Maas, L.B. (1985)J. Biol. Chem. 260, 4210–4216.PubMedGoogle Scholar
  60. 60.
    Beckwith, A.L.J., O'Shea, D.M., and Roberts, D.H. (1986)J. Am. Chem. Soc. 108, 6408–6409.CrossRefGoogle Scholar
  61. 61.
    Porter, N.A., Weber, B.A., Weenen, H., and Khan, J.A. (1980)J. Am. Chem. Soc. 102, 5597–5601.CrossRefGoogle Scholar
  62. 62.
    Dussault, P.H., and Hayden, M.R. (1992)Tetrahedron Lett. 33, 443–446.CrossRefGoogle Scholar
  63. 63.
    Bascetta, E., Gunstone, F.D., and Walton, J.C. (1983)J. Chem. Soc. Perkin Trans. II, 603–613.Google Scholar
  64. 64.
    Hoffmann, R.W. (1989)Chem. Rev. 89, 1841–1860.CrossRefGoogle Scholar
  65. 65.
    Haslbeck, F., Grosch, W., and Firl, J. (1983)Biochim. Biophys. Acta 705, 185–193.Google Scholar
  66. 66.
    Doba, T., Burton, G.W., and Ingold, K.U. (1983)J. Am. Chem. Soc. 105, 6505–6506.CrossRefGoogle Scholar
  67. 67.
    Burton, G.W., and Ingold, K.U. (1981)J. Am. Chem. Soc. 103, 6472–6477.CrossRefGoogle Scholar
  68. 68.
    Niki, E., Kawakami, A., Saito, M., Yamamoto, Y., Tsuchiya, J., and Kamiya, Y. (1985)J. Biol. Chem. 260, 2191–2196.PubMedGoogle Scholar
  69. 69.
    Iwatsuki, M., Tsuchiya, J., Komuro, E., Yamamoto, Y., and Niki, E. (1994)Biochim. Biophys. Acta 1200 19–26.PubMedGoogle Scholar
  70. 70.
    Barclay, L.R.C., Baskin, K.A., Dakin, K.A., Locke, S.J., and Vinqvist, M.R. (1990)Can. J. Chem. 68, 2258–2269.CrossRefGoogle Scholar
  71. 71.
    Burton, G.W., Doba, T., Gabe, E.J., Hughes, L., Lee, F.L., Prasad, L., and Ingold, K.U. (1985)J. Am. Chem. Soc. 107, 7053–7065.CrossRefGoogle Scholar
  72. 72.
    Liebler, D.C., Baker, P.F., and Kaysen, K.L. (1990)J. Am. Chem. Soc. 112, 6995–7000.CrossRefGoogle Scholar
  73. 73.
    Terao, J., and Matsushita, S. (1986)Lipids 21, 255–260.CrossRefGoogle Scholar
  74. 74.
    Koskas, J.P., Cillard, J., and Cillard, P. (1984)J. Am. Oil Chem. Soc. 61, 466–469.Google Scholar
  75. 75.
    Weenen, H., and Porter, N.A. (1982)J. Am. Chem. Soc. 104, 5216–5221.CrossRefGoogle Scholar
  76. 76.
    Peers, K.E., Coxon, D.T., and Chan, H.W.-S. (1981)J. Sci. Food Agric. 32, 898–904.CrossRefGoogle Scholar
  77. 77.
    Nagaoka, S., Okauchi, Y., Urano, S., Nagashima, U., and Maukai, K. (1990)J. Am. Chem. Soc. 112, 8921–8924.CrossRefGoogle Scholar
  78. 78.
    Bruna, E., Petit, E., Beljean-Leymarie, M., Huynh, S., and Nouvelot, A. (1990)Lipids 24, 970–975.Google Scholar
  79. 79.
    Khan, J.A., and Porter, N.A. (1982)Angew. Chem. Int. Ed. 21, 217–218.CrossRefGoogle Scholar
  80. 80.
    Porter, N.A., Wolf, R.A., Yarboro, E.M., and Weenen, H. (1979)Biochem. Biophys. Res. Commun. 89, 1058–1064.PubMedCrossRefGoogle Scholar
  81. 81.
    Porter, N.A., Logan, J., and Kontoyiannidou, V. (1979)J. Org. Chem. 44, 3177–3181.CrossRefGoogle Scholar
  82. 82.
    O'Connor, D.E., Mihelich, E.D., and Coleman, M.C. (1984)J. Am. Chem. Soc. 106, 3577–3584.CrossRefGoogle Scholar
  83. 83.
    Porter, N.A., Funk, M.O., Gilmore, D., Isaac, R., and Nixon, J. (1976)J. Am. Chem. Soc. 98, 6000–6005.PubMedCrossRefGoogle Scholar
  84. 84.
    Nugteren, D.H., Vonkeman, H., and Van Dorp, D.A. (1967)Recueil 86, 1237–1245.Google Scholar
  85. 85.
    Morrow, J.D., Harris, T.M., and Roberts, L.J. (1990)Anal. Biochem. 184, 1–10.PubMedCrossRefGoogle Scholar
  86. 86.
    Morrow, J.D., Minton, T.A., Mukundan, C.R., Campbell, M.D., Zacker, W.E., Daniel, V.C., Badr, K.R., Blair, I.A., and Roberts, J.L. (1994)J. Biol. Chem. 269, 4317–4326.PubMedGoogle Scholar
  87. 87.
    Parthasarathy, S., and Steinberg, D. (1992)Current Opinion in Lipidology 3, 313–317.CrossRefGoogle Scholar
  88. 88.
    Rosenfeld, M.E., and Lipton, B.A. (1992)Current Opinion in Lipidology 3, 318–323.CrossRefGoogle Scholar
  89. 89.
    Jialal, I., and Scaccini, C. (1992)Current Opinion in Lipidology 3, 324–328.CrossRefGoogle Scholar
  90. 90.
    Witzturn, J.L. (1990) inHypercholesterolemia Hypocholesterolemia, Hypertriglyceridemia, pp. 353–364, Plenum Press, New York.Google Scholar
  91. 91.
    Guyton, J.R., Black, B.L., and Seidel, C.L. (1990)Am. J. Pathol. 137, 425–434.PubMedGoogle Scholar
  92. 92.
    Wagner, J.R., Motchnik, P.A., Stocker, R., Sies, H., and Ames, B.N. (1993)J. Biol. Chem. 278, 18502–18506.Google Scholar
  93. 93.
    Bowry, V.W., and Stocker, R. (1993)J. Am. Chem. Soc. 115, 6029–6044.CrossRefGoogle Scholar
  94. 94.
    Ingold, K.U., Bowry, V.W., Stocker, R., and Walling, C. (1993)Proc. Natl. Acad. Sci. USA 90, 45–49.PubMedCrossRefGoogle Scholar
  95. 95.
    Stocker, R., Bowry, V.W., and Frei, B. (1991)Proc. Natl. Acad. Sci. USA 88, 1646–1650.PubMedCrossRefGoogle Scholar
  96. 96.
    Sato, K., Niki, E., and Shimasaki, H. (1990)Arch. Biochem. and Biophys. 279, 402–405.CrossRefGoogle Scholar
  97. 97.
    Lenz, M.L., Hughes, H., Mitchell, J.R., Via, D.P., Guyton, J.R., Taylor, A.A., Gotto, A.M.J., and Smith, C.V. (1990)J. Lipid Res. 31, 1043–1050.PubMedGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1995

Authors and Affiliations

  • Ned A. Porter
    • 1
  • Sarah E. Caldwell
    • 1
  • Karen A. Mills
    • 1
  1. 1.Paul M. Gross Chemiscal Laboratories, Department of ChemistryDuke UniversityDurham

Personalised recommendations