Lipids

, Volume 23, Issue 6, pp 570–579 | Cite as

Fenton reactions in lipid phases

  • K. M. Schaich
  • D. C. Borg
Free Radicals, Antioxidants, Skin Cancer and Related Diseases Symposium Held at the 78th AOCS Annual Meeting in New Orieans, Louisiana, May 1987

Abstract

Metal catalysis of membrane lipid oxidation has been thought to occur only at cell surfaces. However, conflicting observations of the pro-oxidant activity of ferric (Fe3+) vs ferrous (Fe2+) forms of various chelates have raised questions regarding this dogma. This paper suggests that the solubilities of iron complexes in lipid phases and the corresponding abilities to initiate lipid oxidation there, either directly or via Fenton-like production of reactive hydroxyl radicals, are critical determinants of initial catalytic effectiveness.

Partitioning of Fe3+ and Fe2+ complexes and chelates into bulk phases of purified lipids was quantified by atomic absorption spectroscopy. mM solutions of iron salts partitioned into oleic acid at levels of about micromolar. Ethylenediamine tetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) chelates were somewhat less soluble, while adenosine diphosphate (ADP) chelates, and ferrioxamine were soluble as chelates at greater than 10−5 M. Solubilities of all iron compounds in methyl linoleate were 10- to 100-fold lower.

To determine whether Fenton-like reactions occur in lipid phases, H2O2 and either Fe2+ or Fe3+ and a reducing agent were partitioned into the lipid along with the spintrap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), and free radical adducts were recorded by electron paramagnetic resonance (EPR). Hydroxyl radicals (OH.) adducts were observed in oleic acid, but in lipid esters secondary peroxyl radicals predominated, and the presence of OH. adducts was uncertain.

Abbreviations

ADP

adenosine diphosphate

DFO

desferrioxamine

DMPO

5,5-dimethyl-1-pyrroline-N-oxide

DTPA

diethylenetriaminepentaacetic acid

EDTA

ethylenediamine tetraacetic acid

LOOH

lipid hydroperoxides

OH

hydroxyl radicals

O2

superoxide radical anion

AA

atomic absorption spectroscopy

EPR

electron paramagnetic resonance

G

gauss

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borg, D.C., Schaich, K.M., Elmore, J.J. Jr., and Bell, J.A. (1978)Photochem. Photobiol. 28, 887–907.PubMedGoogle Scholar
  2. 2.
    Schaich, K.M., and Borg, D.C. (1980) inAutoxidation in Food and Biological Systems (Simic, M.G., and Karel, M., eds.), pp. 45–70, Plenum Press, New York.Google Scholar
  3. 3.
    Borg, D.C., and Schaich, K.M. (1983) inOxy Radicals and Their Scavenger Systems. Vol. 1: Molecular Aspects (Cohen, G., and Greenwald, R.A., eds.), pp. 122–129, Elsevier Science, New York.Google Scholar
  4. 4.
    Borg, D.C., and Schaich, K.M. (1984)Isr. J. Chem. 24, 38–53.Google Scholar
  5. 5.
    Borg, D.C., Schaich, K.M., and Forman, A. (1984) inOxygen Radicals in Chemistry and Biology (Bors, W., Saran, M., and Tait, D., eds.), pp. 123–129, Walter deGruyter, Berlin.Google Scholar
  6. 6.
    Sies, H., and Summer, K.-H. (1975)Eur. J. Biochem. 57, 503–512.PubMedCrossRefGoogle Scholar
  7. 7.
    Goldstein, G., and Czapski, G. (1986)J. Free Rad. Biol. Med. 2, 3–11.Google Scholar
  8. 8.
    Kunimoto, M., Inoue, K., and Nojima, S. (1981)Biochim. Biophys. Acta 646, 169–178.PubMedCrossRefGoogle Scholar
  9. 9.
    Girotti, A.W., Thomas, J.P., and Jordan, J.E. (1986)Arch. Biochem. Biophys. 251, 639–653.PubMedCrossRefGoogle Scholar
  10. 10.
    Allen, A.O., Hochanadel, C.J., Ghormley, J.A., and Davis, T.W. (1952)J. Phys. Chem. 56, 575–586.CrossRefGoogle Scholar
  11. 11.
    Diehl, H., and Smith, G.F. (1960)The Iron Reagents: Bathophenanthroline, 2,4,6-Tripyridyl-S-Triazine Phenyl-2-Pyridyl Ketoxime, G. Frederick Smith Chem. Co., Columbus, OH.Google Scholar
  12. 12.
    Willard, H.H., Merritt, L.L., Jr., and Dean, J.A. (1965)Instrumental Methods of Analysis, p. 353, Van Nostrand, New York.Google Scholar
  13. 13.
    Cooper, S.R., McArdle, J.V., and Raymond, K.N. (1978)Proc. Natl. Acad. Sci. USA 75, 3551–3554.PubMedCrossRefGoogle Scholar
  14. 14.
    Samuni, A., Carmichael, A.J., Russo, A., Mitchell, J.B., and Riesz, P. (1986)Proc. Natl. Acad. Sci. USA 83, 7593–7597.PubMedCrossRefGoogle Scholar
  15. 15.
    Kornberg, R.D., and McConnell, H.M. (1971)Biochemistry 10, 1111–1120.PubMedCrossRefGoogle Scholar
  16. 16.
    Gardner, H.W., and Kleiman, R. (1981)Biochim. Biophys. Acta 665, 113–125.PubMedGoogle Scholar
  17. 17.
    Field, T.B., McCourt, J.L., and McBryde, W.A.E. (1974)Can. J. Chem. 52, 3119–3125.CrossRefGoogle Scholar
  18. 18.
    Warner, R.C., and Weber, I. (1953)J. Am. Chem. Soc. 75, 5086–5094.CrossRefGoogle Scholar
  19. 19.
    Walton, J.H., and Lewis, H.A. (1916)J. Am. Chem. Soc. 16, 633–638.CrossRefGoogle Scholar
  20. 20.
    Keleti, G., and Lederer, W.H. (1974)Handbook of Micromethods for the Biological Sciences, Van Nostrand Reinhold, New York.Google Scholar
  21. 21.
    Goddu, R.F., LeBlanc, N.F., and Wright, C.M. (1955)Anal. Chem. 27, 1251–1255.CrossRefGoogle Scholar
  22. 22.
    Kalyanaraman, B., Mottley, C., and Mason, R.P. (1984)J. Biochem. Biophys. Methods 9, 27–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Davies, M.J., and Slater, T.F. (1986)Biochem. J., 240, 789–795.PubMedGoogle Scholar
  24. 24.
    Davies, M.J., and Slater, T.F. (1987)Biochem. J. 245, 167–173.PubMedGoogle Scholar
  25. 25.
    Hasegawa, K., and Patterson, L.K. (1978)Photochem. Photobiol. 28, 817–823.Google Scholar
  26. 26.
    Patterson, L.K., and Hasegawa, K. (1978)Ber. Bunsenges. Phys. Chem. 82, 951–956.Google Scholar
  27. 27.
    Janzen, E.G. (1980) inFree Radicals in Biology (Pryor, W.A., ed.), Vol. 4, pp. 115–154, Academic Press, New York.Google Scholar
  28. 28.
    Pryor, W.A., Prier, D.G., and Church, D.F. (1981)Environ. Res. 24, 42–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Gardner, H.W., and Jursinic, P.A. (1981)Biochim. Biophys. Acta 665, 100–112.PubMedGoogle Scholar
  30. 30.
    Ding, H.A. (1984)Copper-catalyzed Lipid Peroxidation in Erythrocyte Membranes, PhD thesis, SUNY Downstate Medical Center, Brooklyn, NY.Google Scholar
  31. 31.
    Romslo, I., and Flatmark, T. (1973)Biochim. Biophys. Acta 305, 29–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Morehouse, L.A., Thomas, C.E., and Aust, S.D. (1984)Arch. Biochem. Biophys. 232, 366–377.PubMedCrossRefGoogle Scholar
  33. 33.
    Winston, G.W., Feierman, D.W., and Cederbaum, A.I. (1984)Arch. Biochem. Biophys. 232, 378–390.PubMedCrossRefGoogle Scholar
  34. 34.
    Ramasarma, T. (1982)Biochim. Biophys. Acta 694, 69–93.PubMedGoogle Scholar
  35. 35.
    Frimer, A., Forman, A., and Borg, D.C. (1983)Isr. J. Chem. 23, 442–445.Google Scholar
  36. 36.
    Chance, B., Sies, H., and Boveris, A. (1979)Physiol. Rev. 59, 527–605.PubMedGoogle Scholar
  37. 37.
    Borg, D.C., and Schaich, K.M., inSymposium on Oxidants and Disease (Halliwell, B., ed.), Federation of the American Societies for Experimental Biology, Bethesda, MD (in press).Google Scholar
  38. 38.
    Borg, D.C., and Schaich, K.M. inOxy-Radicals in MOlecular Biology and Pathology, UCLA Symposia on Molecular and Cellular Biology, New Series (Cerutti, P.A., Fridovich, I., and McCord, J.M., eds.), Vol. 82, Alan R. Liss, Inc., New York (in press).Google Scholar

Copyright information

© American Oil Chemists’ Society 1988

Authors and Affiliations

  • K. M. Schaich
    • 1
  • D. C. Borg
    • 1
  1. 1.Medical DepartmentBrookhaven National LaboratoryUpton

Personalised recommendations