Lipids

, Volume 16, Issue 12, pp 920–926 | Cite as

The influence oftrans-acids on desaturation and elongation of fatty acids in developing brain

  • Harold W. Cook
Article

Abstract

trans-Monounsaturated acids account for up to 3% of the total octadecenoic acyl chains of human brain lipids. To investigate the influence oftrans-acids on desaturation and chain elongation of fatty acids, in vitro and in vivo experiments with rat brain were performed. In the in vitro assays of Δ9 desaturation, Δ6 desaturation and chain elongation,trans,trans-dienoic acid was inhibitory, particularly to chain elongation. Slight differences between the inhibitory effects oftrans-monoenoic acids and theircis-isomers were observed. In an in vivo model, unlabeled fatty acid (stearate, oleate, elaidate, linoleate, linoelaidate, arachidonate, ortrans-monoene from margarine) was injected simultaneously with [1-14C] linoleic acid into the brains of suckling rats. Linoelaidate and oleate inhibited desaturation and elongation of linoleate, whereas elaidate, stearate andtrans-monoene from margarine were stimulatory. While the demonstration of differences betweencis andtrans monoenic isomers required relatively high levels of the test acids, it appears thattrans-acids can influence desaturation and elongation enzymes that lead to acyl chain modification in the central nervous system.

Abbreviations used

FAME

fatty acid methyl ester

GLC

gas liquid chromatography

HPLC

high pressure liquid chromatography

TLC

thin layer chromatography

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Emken, E.A. (1979) in Geometrical and Positional Fatty Acid Isomers (Emken, E.A., and Dutton, H.J., eds.), pp. 99–129, American Oil Chemists' Society, Champaign, IL.Google Scholar
  2. 2.
    Beare-Rogers, J.L. (1979) in Geometrical and Positional Fatty Acid Isomers (Emken, E.A., and Dutton, H.J., eds.) pp. 131–149, American Oil Chemists' Society, Champaign, IL.Google Scholar
  3. 3.
    Johnston, P.V., Johnson, O.C., and Kummerow, F.A. (1957) Science 126, 698–699.PubMedCrossRefGoogle Scholar
  4. 4.
    Schrock, C.G., and Conner, W.E. (1975) Am. J. Clin. Nutr. 28. 1020–1027.PubMedGoogle Scholar
  5. 5.
    Kummerow, F.A. (1979) in Geometrical and Positional Fatty Acid Isomers (Emken, E.A., and Dutton, H.J., eds.) pp. 151–179, American Oil Chemists' Society, Champaign, IL.Google Scholar
  6. 6.
    Lands, W.E.M. (1979) in Geometrical and Positional Fatty Acid Isomers (Emken, E.A., and Dutton, H.J., eds.), pp. 181–212, American Oil Chemists' Society, Champaign, IL.Google Scholar
  7. 7.
    Cook, H.W. (1979) J. Neurochem. 32. 515–519.PubMedCrossRefGoogle Scholar
  8. 8.
    Cook, H.W. (1978) Biochim. Biophys. Acta 531, 245–256.PubMedGoogle Scholar
  9. 9.
    Cook, H.W. (1980) Can. J. Biochem. 58, 121–127.PubMedCrossRefGoogle Scholar
  10. 10.
    Cook, H.W. (1978) J. Neurochem. 30, 1327–1334.PubMedCrossRefGoogle Scholar
  11. 11.
    Cook, H.W., and Spence, M.W. (1973) J. Biol. Chem. 248, 1786–1792.PubMedGoogle Scholar
  12. 12.
    Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  13. 13.
    Metcalfe, L.D., and Schimitz, A.A. (1961) 33, 363–364.Google Scholar
  14. 14.
    Farquhar, J.W. (1962) J. Lipid Res. 3, 21–30Google Scholar
  15. 15.
    Engelhardt, H., and Elgass, H. (1978) J. Chromatogr. 158, 249–259.CrossRefGoogle Scholar
  16. 16.
    Murad, A., and Kishimoto, Y. (1978) Arch. Biochem. Biophys. 424, 1–7.Google Scholar
  17. 17.
    Cook, H.W., and Spence, M.W. (1974) Biochim. Biophys. Acta 369, 129–141.PubMedGoogle Scholar
  18. 18.
    McConnell, K.P., and Sinclair, R.G. (1937) J. Biol. Chem. 118, 131–136.Google Scholar
  19. 19.
    Kaufmann, E.H.P., and Bandyopadhyay, C. (1965) Fette Seifen Anstrichm. 67, 969–974.CrossRefGoogle Scholar
  20. 20.
    Dhopeshwarkar, G.A., and Mead, J.F. (1973). Adv. Lipid Res. 11, 109–142.PubMedGoogle Scholar
  21. 21.
    Karney, R.I., and Dhopeshwarkar, G.A. (1978) Biochim. Biophys. Acta 531, 9–15.PubMedGoogle Scholar
  22. 22.
    Karney, R.I., and Dhopeshwarkar, G.A. (1979) Lipids 14, 257–261.PubMedCrossRefGoogle Scholar
  23. 23.
    Holman, R.T., and Aaes-Jorgensen, E. (1958) Proc. Soc. Exp. Biol. Med. 93, 175–179.Google Scholar
  24. 24.
    Mattson, F.H. (1960) J. Nutr. 71, 366–370.Google Scholar
  25. 25.
    Privett, O.S., Stearns, E.M., and Nickell, E.C. (1967) J. Nutr. 92, 303–310.PubMedGoogle Scholar
  26. 26.
    Hill, E.G., Johnson, S., and Holman, R.T. (1979) J. Nutr. 109, 303–310.Google Scholar
  27. 27.
    Morhrhauer, H., and Holman, R.T. (1963) J. Nutr. 81, 67–74.Google Scholar
  28. 28.
    Brenner, R.R. (1974) Mol. Cell. Biochem. 3, 41–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Ullman, D., and Sprecher, H. (1971) Biochim. Biophys. Acta 248, 61–70.PubMedGoogle Scholar
  30. 30.
    Chang, H.C., Janke, J., Pusch, F., and Holman, R.T. (1973) Biochim. Biophys. Acta 306. 21–25.PubMedGoogle Scholar
  31. 31.
    Mahfouz, M.M., Johnson, S., and Holman, R.T. (1980) Lipids 15, 100–102.PubMedCrossRefGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1981

Authors and Affiliations

  • Harold W. Cook
    • 1
  1. 1.Department of Pediatrics and Atlantic Research Centre for Mental RetardationDalhousie UniversityHalifaxCanada

Personalised recommendations