, Volume 21, Issue 2, pp 170–174 | Cite as

A method for isolation of milk fat globules

  • Stuarf Patton
  • Gail E. Huston


The traditional procedure for isolating milk fat globules involves repeated cycles of centrifuging to obtain globules and redispersion of them in fresh buffer to eliminate other milk components. We have evaluated a simpler, less manipulative method whereby globules are centrifuged out of the milk and through an overlying buffer layer. Human milk samples ranging from 0.1 to 35 ml were centrifuged at 1500×g for 20 min after deposition under a suitable quantity of buffer. This yielded purified globules, in less time, which could be dispersed more satisfactorily than those by the traditional procedure. Protein, phospholipid and cholesterol contents of globules by the two methods were quite similar. A lower protein content (10.4 vs 13.2 mg/g of lipid) was characteristic of globules prepared by the multiple wash method. However, large differences could not be seen in gel electrophoresis patterns of the proteins. By using plastic centrifuge tubes, tube freezing and cleavage just below the globule layer enables clean separation of globule and nonglobule phases for analysis of milk component distributions. Macro (5 to 35 ml of sample) and micro (200 μl or less) versions of the method are described. Limited trials showed that the method can be applied satisfactorily to cow's and goat's milks, but for highly pure globules a deeper buffer column than that used with human milk is required because of their much higher casein content.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bargmann, W., and Knoop, A. (1959)Z. Zellforsch. 49, 34–388.CrossRefGoogle Scholar
  2. 2.
    Saacke, R.G., and Heald, C.W. (1974) inLactation: A Comprehensive Treatise (Larson, B.L., and Smith, V.R., eds.) pp. 147–189, Academic Press, New York.Google Scholar
  3. 3.
    Patton, S. (1973)J. Am. Oil Chem. Soc. 50, 178–185.PubMedGoogle Scholar
  4. 4.
    Patton, S., and Jensen, R.G. (1976)Biomedical Aspects of Lactation, pp. 1–119, Pergamon Press, Oxford, England.Google Scholar
  5. 5.
    Peterson, J.A., Buchring, G., Taylor-Papadimitriou, J., Stampfer, M., and Ceriani, R.L. (1978)Int. J. Cancer 22, 655–661.PubMedGoogle Scholar
  6. 6.
    Arklie, J., Taylor-Papadimitriou, J., Bodmer, W., Egan, M., and Millis, R. (1981)Int. J. Cancer 28, 23–29.PubMedGoogle Scholar
  7. 7.
    Foster, C.S., Edwards, P.A.W., Dinsdale, E.A., and Neville, A.M. (1982)Virchows Arch. A 394, 279–293.Google Scholar
  8. 8.
    Hilkens, J., Buijs, F., Hageman, P., Calafat, J., Sonnenberg, A., and van der Valk, M. (1984)Int. J. Cancer 34, 197–206.PubMedGoogle Scholar
  9. 9.
    Fischer, J., Klein, P-J., Farrar, G.H., Hanisch, F-G., and Uhlenbruck, G. (1984)Biochem. J. 224, 581–589.PubMedGoogle Scholar
  10. 10.
    Wooding, F.B.P., Peaker, M., and Linzell, J.L. (1970)Nature 226, 762–765.PubMedCrossRefGoogle Scholar
  11. 11.
    Wooding, F.B.P., Morgan, G., and Craig, H. (1977)Cell Tissue Res. 185, 535–545.PubMedCrossRefGoogle Scholar
  12. 12.
    Christie, W.W., and Wooding, F.B.P. (1975)Experientia 31, 1445–1447.PubMedCrossRefGoogle Scholar
  13. 13.
    Janssen, M.M.T., and Walstra, P. (1982)Neth. Milk Dairy J. 36, 365–368.Google Scholar
  14. 14.
    Ferguson, D.J.P., and Anderson, T.J. (1983)Anat. Embryol. 168, 349–359.PubMedCrossRefGoogle Scholar
  15. 15.
    Brunner, J.R. (1965) inFundamentals of Dairy Chemistry (Webb, B.H., and Johnson, A.H., eds.) pp. 442–443, Avi Publishing Co., Westport, Connecticut.Google Scholar
  16. 16.
    Zittle, C.A., Dellamonica, E.S., Custer, J.H., and Rudd, R.R. (1956)J. Dairy Sci. 39, 528–535.CrossRefGoogle Scholar
  17. 17.
    Patton, S. (1982)Biochim. Biophys. Acta 688, 727–734.PubMedCrossRefGoogle Scholar
  18. 18.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  19. 19.
    Horowitz, W., ed. (1975)Official Methods of Analysis of the AOAC, p. 258.Google Scholar
  20. 20.
    Walstra, P., and DeGraaf, J.J. (1962)Neth. Milk Dairy J. 16, 283–285.Google Scholar
  21. 21.
    Rouser, G., Siakotos, A.N., and Fleischer, S. (1966)Lipids 1, 85–86.CrossRefPubMedGoogle Scholar
  22. 22.
    Bachman, K.C., Lin, J-H., and Wilcox, C.J. (1976)J. Assoc. Off. Anal. Chem. 59, 1146–1149.PubMedGoogle Scholar
  23. 23.
    Huston, G.E., and Patton, S. (1985) inHuman Lactation: Milk Components and Methodologies (Jensen, R.G., and Neville, M.C., eds.), pp. 85–94, Plenum Press, New York.Google Scholar
  24. 24.
    Hambraeus, L., Lonnerdal, B., Forsum, E., and Gebre-Medhin, M. (1978)Acta Paediatr. Scand. 67, 561–565.PubMedGoogle Scholar
  25. 25.
    Jenness, R. (1979)Sem. Perinatol. 3, 225–239.Google Scholar
  26. 26.
    Lewis-Jones, D.I., Lewis-Jones, M.S., Connally, R.C., Lloyd, D.C., and West, C.R. (1985)Pediatr. Res. 19, 561–565.PubMedGoogle Scholar
  27. 27.
    Lonnerdal, B., and Forsum, E. (1985)Am. J. Clin. Nutr. 41, 113–120.PubMedGoogle Scholar
  28. 28.
    Walstra, P., and Jenness, R. (1984)Dairy Chemistry and Physics, p. 107, Wiley & Sons, New York.Google Scholar
  29. 29.
    Brodbeck, U., and Ebner, K.E. (1966)J. Biol. Chem. 241, 762–764.PubMedGoogle Scholar
  30. 30.
    Martel-Pradal, M.B., and Got, R. (1972)FEBS Lett. 21, 220–222.PubMedCrossRefGoogle Scholar
  31. 31.
    Patton, S., and Huston, G.E. (1984)Nutr. Rep. Int. 30, 1401–1408.Google Scholar
  32. 32.
    Patton, S., and Huston, G.E. (1985) inHuman Lactation: Milk Components and Methodologies (Jensen, R.G., and Neville, M.C., eds.), pp. 81–83, Plenum Press, New York.Google Scholar

Copyright information

© American Oil Chemists’ Society 1986

Authors and Affiliations

  • Stuarf Patton
    • 1
  • Gail E. Huston
    • 1
  1. 1.Department of Neurosciences M-008University of California-San DiegoLa Jolla

Personalised recommendations