, Volume 22, Issue 4, pp 253–260 | Cite as

Effects of aging on the composition and metabolism of docosahexaenoate-containing lipids of retina

  • N. P. Rotstein
  • M. G. Ilincheta de Boschero
  • N. M. Giusto
  • M. I. Aveldaño


The amount of docosahexaenoate (22∶6n−3)-containing phospholipid species decreases with aging in the rat retina. Most lipids, but especially choline and serine glycerophospholipids, show a significant fall in 22∶6n−3, which is not compensated by increases in other polyenoic fatty acids. The decrease not only affects 22∶6 but also various very long chain n−3 hexaenoic fatty acids which, in phosphatidylcholine, have up to 36 carbon atoms, and which are probably synthesized by successive elongations of 22∶6n−3. The in vitro incorporation of [2-3H] glycerol into retinal lipids indicates that the de novo biosynthetic pathways are not impaired by aging. The incorporation of [1-14C]docosahexaenoate is significantly stimulated into all lipids of aged retinas, but to the largest extent in those showing the largest decreases in 22∶6, especially in choline glycerophospholipids. The results indicate that the decreased levels of 22∶6 with aging are due not to an impaired activity of the enzymes involved in the synthesis and turnover of phospholipids but to a decreased availability of this polyene in the retina. It is suggested that this may stem from a defect in some of the enzymatic steps that lead to the synthesis of 22∶6n−3, probably that catalyzed by Δ4 desaturase, the effect on longer hexaenes being secondary to the decreased synthesis of 22∶6.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stubbs, C.D., and Smith, A.D. (1984)Biochim. Biophys. Acta 779, 89–137.PubMedGoogle Scholar
  2. 2.
    Aveldaño, M.I. (1987)J. Biol. Chem. 262, 1172–1179.PubMedGoogle Scholar
  3. 3.
    Aveldaño, M.I., and Sprecher, H. (1987)J. Biol. Chem. 262, 1180–1186.PubMedGoogle Scholar
  4. 4.
    Ames, A. III, and Hasting, B. (1956)J. Neurophysiol. 19, 201–212.PubMedGoogle Scholar
  5. 5.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  6. 6.
    Folch, J., Lees, M., and Sloane-Stanley, G.H.S. (1957)J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  7. 7.
    Rouser, G., Fleischer, S., and Yamamoto, A. (1970)Lipids 5, 494–496.PubMedCrossRefGoogle Scholar
  8. 8.
    Morrison, W.R., and Smith, L.M. (1964)J. Lipid Res., 5, 600–608.PubMedGoogle Scholar
  9. 9.
    Aveldaño, M.I., Pasquaré de García, S.J., and Bazán, N.G. (1983)J. Lipid Res. 24, 628–638.PubMedGoogle Scholar
  10. 10.
    Giusto, N.M., Boschero, M.I., Sprecher, H., and Aveldaño, M.I. (1986)Biochim. Biophys. Acta 860, 137–148.CrossRefGoogle Scholar
  11. 11.
    Bazán, N.G. (1970)Biochim. Biophys. Acta 218, 1–10.PubMedGoogle Scholar
  12. 12.
    Mohl, H., and Hegner, D. (1978)Eur. J. Biochem. 82, 563–567.CrossRefGoogle Scholar
  13. 13.
    Tappel, A.L. (1980) inFree Radicals in Biology (Pryor, W.A., ed.) Vol. IV, pp. 2–48, Academic Press, New York.Google Scholar
  14. 14.
    Harman, D. (1981)Proc. Natl. Acad. Sci. USA 78, 7124–7128.PubMedCrossRefGoogle Scholar
  15. 15.
    Witting, L.A. (1980) inFree Radicals in Biology (Pryor, W.A., ed.) Vol. IV, pp. 295–319, Academic Press, New York.Google Scholar
  16. 16.
    Scharch, K.M., and Kavel, M. (1976)Lipids 11, 392–400.Google Scholar
  17. 17.
    Magy, K., Zs-Magy, V., Bertoni-Freddari, C., and Zs-Magy, I. (1983)Arch. Gerontol. Geriat. 2, 23–39.CrossRefGoogle Scholar
  18. 18.
    Cohen, B.M., and Zubenko, G.S. (1985)Life Sci. 37, 1403–1409.PubMedCrossRefGoogle Scholar
  19. 19.
    Magy, K., Simon, P., and Zs-Magy, I. (1983)Biochem. Biophys. Res. Commun. 117, 688–699.CrossRefGoogle Scholar
  20. 20.
    Jeffcoat, R., and James, A.T. (1984) inFatty Acid Metabolism and Its Regulation (Numa, S., ed.) Vol. 7, pp. 85–112, Elsevier, Amsterdam.Google Scholar
  21. 21.
    Sprecher, H. (1981) inProgress in Lipid Research (Holman, R.T., ed.) Vol. 20, pp. 13–22, Pergamon Press, Oxford.Google Scholar
  22. 22.
    Brenner, R.R. (1981) inProgress in Lipid Research (Holman, R.T., ed.) Vol. 20 pp. 41–47, Pergamon Press, Oxford.Google Scholar
  23. 23.
    Bazán, H.E.P., Careaga, M.M., Sprecher, H., and Bazán, N. (1982)Biochim. Biophys. Acta 712, 123–128.PubMedGoogle Scholar
  24. 24.
    Holman, R.T. (1978)J. Am. Oil Chem. Soc. 55, 774A-781A.PubMedGoogle Scholar
  25. 25.
    Futterman, S., Downer, J.L., and Hendrickson, A. (1971)Invest. Ophthalmol. 10, 151–156.PubMedGoogle Scholar
  26. 26.
    Anderson, R.E., and Maude, M.B. (1972)Arch. Biochem. Biophys. 151, 270–276.PubMedCrossRefGoogle Scholar
  27. 27.
    Benolken, R.M., Anderson, R.E., and Wheeler, T.G. (1973)Science 182, 1253–1254.PubMedCrossRefGoogle Scholar
  28. 28.
    Tinoco, J., Miljanich, P., and Medwadowski, B. (1977)Biochim. Biophys. Acta 486, 575–578.PubMedGoogle Scholar
  29. 29.
    Whitaker, M.O., Wyche, A., Fitzpatrick, F., Sprecher, H., and Needleman, P. (1979)Proc. Natl. Acad Sci. USA 76, 5919–5923.PubMedCrossRefGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1987

Authors and Affiliations

  • N. P. Rotstein
    • 1
  • M. G. Ilincheta de Boschero
    • 1
  • N. M. Giusto
    • 1
  • M. I. Aveldaño
    • 1
  1. 1.Instituto de Investigaciones BioquímicasUniversidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y TécnicasArgentina

Personalised recommendations