, Volume 11, Issue 10, pp 741–746 | Cite as

Lipids of some thermophilic fungi

  • K. S. Raju
  • R. Maheshwari
  • P. S. Sastry


Total lipid content in the thermophilic fungi—Thermoascus aurantiacus, Humicola lanuginosa, Malbranchea pulchella var.sulfurea, andAbsidia ramosa—varied from 5.3 to 19.1% of mycelial dry weight. The neutral and polar lipid fractions accounted for 56.4 to 80.2% and 19.8 to 43.6%, respectively. All the fungi contained monoglycerides, diglycerides, triglycerides, free fatty acids, and sterols in variable amounts. Sterol ester was detected only inA. ramosa. Phosphatide composition was: phosphatidyl choline (15.9–47%), phosphatidyl ethanolamine (23.4–67%), phosphatidyl serine (9.3–17.6%), and phosphatidyl inositol (1.9–11.9%). Diphosphatidyl glycerol occurred in considerable quantity only inH. lanuginosa andM. pulchella var.sulfurea. Phosphatidic acid, detected as a minor component only inM. pulchella var.sulfurea andA. ramosa, does not appear to be a characteristic phosphatide of thermophilic fungi as suggested earlier. The 16∶0, 16∶1, 18∶0, 18∶1, and 18∶2 acids were the main fatty acid components. In addition,A. ramosa contained 18∶3 acid. Total lipids contained an average of 0.93 double bonds per mole of fatty acids, and neutral lipids tend to be more unsaturated than phospholipids.


Polar Lipid Neutral Lipid Monoglyceride Phosphatidic Acid Total Lipid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooney, D.C., and R. Emerson, “Thermophilic Fungi,” W.H. Freeman and Co., San Francisco, CA, 1964, p. 148.Google Scholar
  2. 2.
    Mumma, R.O., C.L. Fergus, and R.D. Sekura, Lipids 5:100 (1970).PubMedCrossRefGoogle Scholar
  3. 3.
    Mumma, R.O., R.D. Sekura, and C.L. Fergus, Ibid 6:584 (1971).CrossRefGoogle Scholar
  4. 4.
    Bruszewski, T.E., C.L. Fergus, and R.O. Mumma, Ibid. 7:695 (1972).CrossRefGoogle Scholar
  5. 5.
    Mumma, R.O., R.D. Sekura, and C.L. Fergus, Ibid. 6:589 (1971).CrossRefGoogle Scholar
  6. 6.
    Vogel, H.J., Am. Nat. 98:435 (1964).CrossRefGoogle Scholar
  7. 7.
    Skipski, V.P., and M. Barclay, Methods Enzymol. 14:530 (1969).CrossRefGoogle Scholar
  8. 8.
    Varskovsky, V. E., and E.Y. Kostetsky, J. Lipid Res. 9:396 (1968).Google Scholar
  9. 9.
    Marinetti, G.V., Ibid. 3:1 (1962).Google Scholar
  10. 10.
    Bartlett, G.R., J. Biol. Chem. 234:466 (1959).PubMedGoogle Scholar
  11. 11.
    Kates, M. Lipid Res. 5. 132 (1964).Google Scholar
  12. 12.
    Kates, M., and R.M. Baxter, Can. J. Biochem. Physiol. 40:1213 (1962).PubMedGoogle Scholar
  13. 13.
    Brennan, P.J., P.F.S. Griffin, D.M. Lösel, and D. Tyrrell, in “Progress in the Chemistry Fats and other Lipids, “Vol. 14, Edited by R.T. Holman, Pergamon Press, Oxford, England, pp 49–90.Google Scholar
  14. 14.
    Akamatsu, Y., Y. Ono, and S. Nojima, J. Biochem. 61:96 (1967).PubMedGoogle Scholar
  15. 15.
    Bowman, R.D., and R.O. Mumma, Biochim. Biophys. Acta 144:501 (1967).PubMedGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1976

Authors and Affiliations

  • K. S. Raju
    • 1
  • R. Maheshwari
    • 1
  • P. S. Sastry
    • 1
  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations