, Volume 7, Issue 5, pp 310–323

Lipid metabolism during cold-exposure and during cold-acclimation

  • Jean Himms-Hagen


The lipid-containing tissues are important in cold-exposure (exposure to cold of animals not previously living in the cold) and in cold-acclimation (the adaptive state achieved when animals have lived in the cold for several weeks); these are the white adipose tissue and the brown adipose tissue. The white adipose tissue serves as a store of readily mobilized substrate (free fatty acids [FFA]) for calorigenesis in other tissues during cold-exposure, principally for shivering thermogenesis in muscle. The mobilization of the sterol lipid is brought about through activation of the sympathetic nervous system by the cold stress. The brown adipose tissue has two functions in cold-exposure and in cold-adaptation, both quite distinct from the function of the white adipose tissue. These functions are heat production and the maintenance of the adaptationto cold. The triglycerides stored in the brown adipose tissue are mobilized as FFA, also via activation of the sympathetic nervous system, but the FFA are used primarily within the brown adipose tissue itself. The FFA are the agents which switch on the calorigenesis in the brown adipose tissue (via a poorly understood form of “loosening” of the coupling of oxidative phosphorylation); they also serve as the substrate for the calorigenesis. The heat-producing function of the brown adipose tissue occurs in both cold-exposed and in cold-acclimated animals; it is of greater importance in the latter because this tissue normally grows in response to cold. Much of the heat production in cold-acclimated animals (nonshivering thermogenesis) occurs outside the brown adipose tissue itself, most probably in the muscles, and the cold-acclimated animal differs from the cold-exposed animal in being able to switch on nonshivering thermogenesis via activation of the sympathetic nervous system. The maintenance of this adaptation for nonshivering thermogenesis in tissue other than the brown adipose tissue itself depends upon the brown adipose tissue. The adaptation disappears if the brown adipose tissue is removed; the adaptation does not develop if the normal proliferation of mitochondria in the growing brown adipose tissue is inhibited (with oxytetracycline) during acclimation of rats to cold. The mechanism by which the brown adipose tissue exerts this second function is at present unknown. An increased turnover of certain mitochondrial proteins occurs in those tissues (skeletal muscle and brown adipose tissue) in which nonshivering thermogenesis occurs in cold-acclimated rats; no change in turnover of mitochondrial proteins occurs in other tissues (liver and kidney). The relation of this alteration in mitochondrial proteins to the adaptation for nonshivering thermogenesis is at present unknown. However this first demonstration of a biochemical difference between skeletal muscle of cold-acclimated rats and skeletal muscle of warm-acclimated rats opens up a new approach to the study of the nature of both the adaptation for nonshivering thermogenesis and of the role of the brown adipose tissue in the development and maintenance of this adaptation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Masoro, E.J., Physiol. Rev. 46:67 (1966).PubMedGoogle Scholar
  2. 2.
    Hemingway, A., Ibid. 43:397 (1963).PubMedGoogle Scholar
  3. 3.
    Hemingway, A., and W.M. Price, Anesthesiology 29:693 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    Himms-Hagen, J., in, “Handbook of Physiology, Adrenal Medulla,” in press.Google Scholar
  5. 5.
    Maickel, R.P., E.O. Westermann and B.B. Brodie, J. Pharmacol. 134:167 (1961).Google Scholar
  6. 6.
    Gilgen, A., R.P. Maickel, O. Nikodijevic and B.B. Brodie, Life Sci. 1:709 (1962).PubMedCrossRefGoogle Scholar
  7. 7.
    Maickel, R.P. H. Sussman, K. Yamada and B.B. Brodie, Ibid. 3:210 (1963).CrossRefGoogle Scholar
  8. 8.
    Mallov, S., Amer. J. Physiol. 204:157 (1963).PubMedGoogle Scholar
  9. 9.
    Stock, K., and E. Westermann, Arch. Exp. Path. Pharmak. 251:465 (1965).Google Scholar
  10. 10.
    Himms-Hagen, J., Can. J. Physiol. Pharmacol. 43:379 (1965).PubMedGoogle Scholar
  11. 11.
    Wertheimer, E., M. Hamosh and E. Shafrir, Am. J. Clin. Nutr. 8:705 (1960).Google Scholar
  12. 12.
    Mitchell, C.E., and B.B. Longwell, Proc. Soc. Exp. Biol. Med. 117:590 (1964).PubMedGoogle Scholar
  13. 13.
    Masironi, R., and F. Depocas, Can. J. Biochem. Physiol. 39:219 (1961).PubMedGoogle Scholar
  14. 14.
    Page, E., Rev. Can. Biol. 16:269 (1957).PubMedGoogle Scholar
  15. 15.
    Therriault, D.G., R.W. Hubbard and D.B. Mellin, Lipids 4:413 (1969).PubMedGoogle Scholar
  16. 16.
    Therriault, D.G., and R.H. Poe, Can. J. Biochem. 43:1427 (1965).PubMedGoogle Scholar
  17. 17.
    Masoro, E.J., Fed. Proc. 19 (Supplement 5):115 (1960).PubMedGoogle Scholar
  18. 18.
    Radomski, M.W., Can. J. Physiol. Pharmacol. 44:711 (1966).PubMedGoogle Scholar
  19. 19.
    Holloszy, J.O., J.S. Skinner, G. Toro and T.K. Cureton, Am. J. Cardiol. 14:753 (1964).PubMedCrossRefGoogle Scholar
  20. 20.
    Carlson, L.A., and F. Mossfeldt Acta Physiol. Scand. 62:51 (1964).PubMedGoogle Scholar
  21. 21.
    Grafnetter, D., J. Grafnetterova, E. Grossi and P. Morganti, Med. Pharmacol. Exp. 12:266 (1965).Google Scholar
  22. 22.
    Nikkilä, E.A., P. Torsti and O. Penttilä, Metabolism 12:863 (1963).Google Scholar
  23. 23.
    Nikkilä, E.A., P. Torsti and O. Penttilä, Life Sci. 4:27 (1965).CrossRefGoogle Scholar
  24. 24.
    Scaria, K.S., and K. Prabha, Ind. J. Exp. Biol. 5:255 (1967).Google Scholar
  25. 25.
    McBurney, L.J., and M.W. Radomski, Am. J. Physiol. 217:19 (1969).PubMedGoogle Scholar
  26. 26.
    Depocas, F., and R. Masironi, Ibid. 199:1051 (1960).PubMedGoogle Scholar
  27. 27.
    Depocas, F., Fed. Proc. 19:106 (1960).PubMedGoogle Scholar
  28. 28.
    Depocas, F., Am. J. Physiol. 202:1015 (1962).PubMedGoogle Scholar
  29. 29.
    Penner, P.E., and J. Himms-Hagen, Can. J. Biochem. 46:1205 (1968).PubMedCrossRefGoogle Scholar
  30. 30.
    Nakagawa, H., and K. Nagai, J. Biochem. (Tokyo) 69:923 (1971).Google Scholar
  31. 31.
    Estler, C.J., H.P. Ammon and B. Lang, Eur. J. Pharmacol. 9:257 (1970).PubMedCrossRefGoogle Scholar
  32. 32.
    Hashimoto, Y., T. Nishimura, Y. Kurobe, Y. Kohashi, M. Kakie and J. Ando, Jap. J. Pharmacol. 20:441 (1970).PubMedGoogle Scholar
  33. 33.
    Jarratt, A.M., and N.W. Nowell, Can. J. Physiol. Pharmacol. 47:1 (1969).PubMedGoogle Scholar
  34. 34.
    Maickel, R.P., N. Matussek, D.N. Stern and B.B. Brodie, J. Pharmacol. 157:103 (1967).Google Scholar
  35. 35.
    Maickel, R.P., D.N. Stern, E. Takabatake and B.B. Brodie, Ibid. 157:111 (1967).Google Scholar
  36. 36.
    Hart, J.S., and L. Jansky, Can. J. Biochem. Physiol. 41:629 (1963).PubMedGoogle Scholar
  37. 37.
    Masoro, E.J., ‘Physiological Chemistry of Lipids in Mammals,” Saunders, 1968.Google Scholar
  38. 38.
    Maling, H.M., D.N. Stern, P.D. Altland, B. Highman and B.B. Brodie, J. Pharmacol. 154:35 (1966).Google Scholar
  39. 39.
    Gollnick, P.D., R.G. Soule, A.W. Taylor, C. Williams and C.D. Ianuzzo, Am. J. Physiol. 219:729 (1970).PubMedGoogle Scholar
  40. 40.
    Carlson, L.A., R.J. Havel, L.-G. Ekelund and A. Holmgren, Metabolism 12:837 (1963).PubMedGoogle Scholar
  41. 41.
    Sellers, E.A., J.W. Scott and N. Thomas, Am. J. Physiol. 177:372 (1954).PubMedGoogle Scholar
  42. 42.
    Hart, J.S., O. Héroux and F. Depocas, J. Appl. Physiol. 9:404 (1956).PubMedGoogle Scholar
  43. 43.
    Héroux, O., J.S. Hart and F. Depocas, Ibid. 9:399 (1956).PubMedGoogle Scholar
  44. 44.
    Strømme, S.B., and H.T. Hammel, Ibid. 23:815 (1967).PubMedGoogle Scholar
  45. 45.
    Hsieh, A.C.L., and L.D. Carlson, Am. J. Physiol. 190:243 (1957).PubMedGoogle Scholar
  46. 46.
    Depocas, F., Can. J. Biochem. Physiol. 38:107 (1960).PubMedGoogle Scholar
  47. 47.
    Jansky, L., R. Bartunkova and E. Zeisberger, Physiol. Bohemoslov. 16:366 (1967).PubMedGoogle Scholar
  48. 48.
    Himms-Hagen, J., J. Physiol. (London) 205:393 (1969).Google Scholar
  49. 49.
    Himms-Hagen, J. Adv. Enzyme Reg. 8:131 (1970).CrossRefGoogle Scholar
  50. 50.
    Cottle, W.H., and L.D. Carlson, Proc. Soc. Exp. Biol. Med. 92:845 (1956).PubMedGoogle Scholar
  51. 51.
    Hsieh, A.C.L., L.D. Carlson and G. Gray, Am. J. Physiol. 190:247 (1957).PubMedGoogle Scholar
  52. 52.
    LeBlanc, J., and M. Villemaire, Ibid. 207:853 (1964).PubMedGoogle Scholar
  53. 53.
    LeBlanc, J., and A. Villemaire, Ibid. 218:1742 (1970).PubMedGoogle Scholar
  54. 54.
    Hsieh, A.C.L., and J.C.C. Wang, Ibid. 221:335 (1971).PubMedGoogle Scholar
  55. 55.
    Jansky, L., and J.S. Hart, Can. J. Biochem. Physiol. 41:953 (1963).Google Scholar
  56. 56.
    Mejsnar, J., in “Symposium on Environmental Physiology,” July 1971, in press.Google Scholar
  57. 57.
    Smith, R.E., and B.A. Horwitz, Physiol. Rev. 49:330 (1969).PubMedGoogle Scholar
  58. 58.
    Chaffee, R.R.J., and J.C. Roberts, Ann. Rev. Physiol. 33:155 (1971).CrossRefGoogle Scholar
  59. 59.
    Skala, J., T. Barnard and O. Lindberg, Comp. Biochem. Physiol. 33:509 (1970).PubMedCrossRefGoogle Scholar
  60. 60.
    Thomson, J.F., D.A. Habeck, S.L. Nance and K.L. Beetham, J. Cell Biol. 41:312 (1969).CrossRefGoogle Scholar
  61. 61.
    Suter, E., J. Ultrastruct. Res. 26:216 (1969).PubMedCrossRefGoogle Scholar
  62. 62.
    Barnard, T., J. Skala and O. Lindberg, Comp. Biochem. Physiol. 33:499 (1970).CrossRefGoogle Scholar
  63. 63.
    Smith, R.E., and J.C. Roberts, Am. J. Physiol. 206:143 (1964).PubMedGoogle Scholar
  64. 64.
    Wünnenberg, W., and K. Brück, Pflügers Arch. Ges. Physiol. 299:1 (1968).CrossRefGoogle Scholar
  65. 65.
    Brück, K., W. Wünnberg and E. Zeisberger, Fed. Proc. 28:1035 (1969).PubMedGoogle Scholar
  66. 66.
    Donhoffer, S., and Z. Szelényi, Acta Physiol. Acad. Sci. Hung. 32:53 (1967).PubMedGoogle Scholar
  67. 67.
    Donhoffer, S., and Z. Szelényi, Ibid. 28:349 (1968).Google Scholar
  68. 68.
    Szekely, M., M. Kellermayer, G. Cholnoky and I. Sümegi, Experientia 26:1314 (1970).PubMedCrossRefGoogle Scholar
  69. 69.
    Depocase, F., Can. J Biochem. Physiol. 36:691 (1958).Google Scholar
  70. 70.
    Beck, L.V., D.S. Zaharko and S.C. Kalser, Life Sci. 6:1501 (1967).PubMedCrossRefGoogle Scholar
  71. 71.
    Radomski, M.W., and T. Orme, Am. J. Physiol. 220:1852 (1971).PubMedGoogle Scholar
  72. 72.
    Alousi, A.A., and S. Mallov, Ibid. 206:603 (1964).PubMedGoogle Scholar
  73. 73.
    Hannon, J.P., and A.M. Larson, Ibid. 203:1055 (1962).PubMedGoogle Scholar
  74. 74.
    Mitchell, G.E., and B.B. Longwell, Proc. Soc. Exp. Biol. Med. 117:593 (1964).PubMedGoogle Scholar
  75. 75.
    Hubbard, R.W., D.P. Therriault, H.P. Voorheis and W.T. Matthew, Bull, N.J. Acad. Sci. March 1969, p. 52.Google Scholar
  76. 76.
    Sporn, E.M., M.A. Mehlman, E.W. Somberg, C. Dalton and J. Quinn, Ibid., March 1969, p. 104.Google Scholar
  77. 77.
    Himms-Hagen, J. Fed. Proc. 29:1388 (1970).Google Scholar
  78. 78.
    Therriault, D.G., J.F. Morningstar and S.V.G. Winters, Life Sci. 8 (part II):1353 (1969).PubMedCrossRefGoogle Scholar
  79. 79.
    Therriault, D.G., and D.B. Mellin, Lipids 6:486 (1971).PubMedGoogle Scholar
  80. 80.
    Steiner, G., and G.F. Cahill, Jr., Am. J. Physiol. 207:840 (1964).PubMedGoogle Scholar
  81. 81.
    Steiner, G., E. Schönbaum, G.E. Johnson and E.A. Sellers, Can. J. Physiol. Pharmacol. 46:453 (1968).PubMedGoogle Scholar
  82. 82.
    Himms-Hagen, J., Can. J. Biochem. 47:251 (1969).PubMedCrossRefGoogle Scholar
  83. 83.
    Steiner, G., and G.F. Cahill, Jr., Am. J. Physiol. 211:1325 (1966).PubMedGoogle Scholar
  84. 84.
    Steiner, G., G.E. Johnson, E.A. Sellers and E. Schönbaum, Fed. Proc. 28:1017 (1969).Google Scholar
  85. 85.
    Steiner, G., M. Loveland and E. Schönbaum, Am. J. Physiol. 218:566 (1970).PubMedGoogle Scholar
  86. 86.
    Dorigo, P., I. Maragno, A. Bressa and G. Fassina, Biochem. Pharmacol. 20:1201 (1971).PubMedCrossRefGoogle Scholar
  87. 87.
    Muirhead, M., and J. Himms-Hagen, Can. J. Biochem. 49:802 (1971).PubMedGoogle Scholar
  88. 88.
    Delisle, G., and M.W. Radomski, Can. J. Physiol. Pharmacol. 46:71 (1968).PubMedGoogle Scholar
  89. 89.
    Therriault, D.G., and M.A. Mehlman, Can. J. Biochem. 43:1437 (1965).PubMedGoogle Scholar
  90. 90.
    Marquis, N.R., and I.B. Fritz, J. Lipid Res. 5:184 (1964).PubMedGoogle Scholar
  91. 91.
    Marquis, N.R., and I.B. Fritz, J. Biol. Chem. 240:2193 (1963).Google Scholar
  92. 92.
    Hahn, P., J. Skala and P. Davies, Can. J. Physiol. Pharmacol. 49:853 (1971).PubMedGoogle Scholar
  93. 93.
    Masoro, E.J., Fed. Proc. 19(Supplement 5):25 (1960).Google Scholar
  94. 94.
    Masoro, E.J., Bull. N.J. Acad. Sci., March 1969, p. 59.Google Scholar
  95. 95.
    Himms-Hagen, J., Pharmacol. Rev. 19:367 (1967).PubMedGoogle Scholar
  96. 96.
    Hsieh, A.C.L., C.W. Pun, K.M. Li and K.W. Ti, Fed. Proc. 25:1205 (1966).PubMedGoogle Scholar
  97. 97.
    Panagos, S., R.E. Beyer and E.J. Masoro, Biochim. Biophys. Acta 29:204 (1958).PubMedCrossRefGoogle Scholar
  98. 98.
    Hannon, J.P., Am. J. Physiol. 196:890 (1959).PubMedGoogle Scholar
  99. 99.
    Smith, R.E., Fed. Proc. (Supplement 5):146 (1960).Google Scholar
  100. 100.
    Lianides, S.P., and R.E. Beyer, Am. J. Physiol. 199:836 (1960).PubMedGoogle Scholar
  101. 101.
    Patkin, J., and E.J. Masoro, Ibid. 199:201 (1960).PubMedGoogle Scholar
  102. 102.
    Aldridge, W.N., and H.B. Stoner, Biochim. Biophys. Acta 78:736 (1963).PubMedCrossRefGoogle Scholar
  103. 103.
    Lianides, S.P., and R.E. Beyer, Nature 188:1196 (1960).PubMedCrossRefGoogle Scholar
  104. 104.
    Boatman, J.B., M.M. Boucek and M.J. Rabinovitz, Am. J. Physiol. 202:1037 (1962).PubMedGoogle Scholar
  105. 105.
    Andersen, H.T., E.N. Christiansen, H.J. Grav and J.I. Pedersen, Acta Physiol. Scand. 80:1 (1970).PubMedGoogle Scholar
  106. 106.
    Girardier, L., and J. Seydoux, J. Physiol. (Paris) 63:147 (1971).Google Scholar
  107. 107.
    Lindberg, O., S.B. Prusinger, B. Cannon and T.M. Ching, Lipids 5:204 (1970).PubMedGoogle Scholar
  108. 108.
    Williamson, J.R., S. Prusiner, M.S. Olson and M. Fukami, Ibid. 5:1 (1970).PubMedCrossRefGoogle Scholar
  109. 109.
    Leduc, J., and P. Rivest, Rev. Can. Biol. 28:49 (1969).PubMedGoogle Scholar
  110. 110.
    Himms-Hagen, J., L. Bukowiecki, W. Behrens and M. Bonin, Fed., Proc., in press.Google Scholar
  111. 111.
    Rabinowitz, M., and H. Swift, Physiol. Rev. 50:376 (1970).PubMedGoogle Scholar
  112. 112.
    Ashwell, M., and T.S. Work, Ann. Rev. Biochem. 39:251 (1970).PubMedCrossRefGoogle Scholar
  113. 113.
    Kroon, A.M., and H. de Vries, in, “Control of Organelle Development,” Edited by P.L. Miller, Cambridge University Press, New York, 1970, p. 181.Google Scholar
  114. 114.
    De Vries, H., and A.M. Kroon, Biochim. Biophys. Acta 204:531 (1970).PubMedGoogle Scholar
  115. 115.
    Himms-Hagen, J., Can. J. Physiol. Pharmacol. 49:545 (1971).PubMedGoogle Scholar
  116. 116.
    Bukowiecki, L., and J. Himms-Hagen, Ibid. 49: 1015 (1971).PubMedGoogle Scholar
  117. 117.
    Lusena, C.V., and F. Depocas, Can. J. Biochem. 44:497 (1966).PubMedCrossRefGoogle Scholar
  118. 118.
    Lusena, C.V., and F. Depocas, Can. J. Physiol. Pharmacol. 45:683 (1967).PubMedGoogle Scholar
  119. 119.
    Depocas, F., Ibid. 44:875 (1966).PubMedGoogle Scholar
  120. 120.
    Getz, G.S., Adv. Lipid Res. 8:175 (1970).PubMedGoogle Scholar
  121. 121.
    Arcos, J.C., R.S. Sohal, S-C. Sun, M.F. Argus and G.E. Burch, Exp. Molec. Pathol. 8:49 (1968).CrossRefGoogle Scholar
  122. 122.
    Laguens, R.P., and L.A. Gomez-Dumm, Circulation Res. 21:271 (1967).PubMedGoogle Scholar
  123. 123.
    Laguens, R.P., B.B. Lozada, C.L. Gomez-Dumm and A.R. Beramendi, Experientia 15:244 (1966).CrossRefGoogle Scholar
  124. 124.
    Gollnick, P.D., and D.W. King, Am. J. Physiol. 216:1502 (1969).PubMedGoogle Scholar
  125. 125.
    Holloszy, J.O., J. Biol. Chem. 242:2278 (1967).PubMedGoogle Scholar
  126. 126.
    Holloszy, J.O., L.B. Oscai, I.J. Don and P.A. Mole', Biochem. Biophys. Res. Commun. 40:1368 (1970).PubMedCrossRefGoogle Scholar
  127. 127.
    Holloszy, J.O., and L.B. Oscai, Arch. Biochem. Biophys. 130:653 (1969).PubMedCrossRefGoogle Scholar
  128. 128.
    Aschenbrenner, B., R. Druyan, R. Albin and M. Rabinowitz, Biochem. J. 119:157 (1970).PubMedGoogle Scholar
  129. 129.
    Arias, I.M., D. Doyle and R.T. Schimke, J. Biol. Chem. 244:3303 (1969).PubMedGoogle Scholar
  130. 130.
    Swick, R.W., A.K. Rexroth and J.L. Stange, Ibid. 243:3581 (1968).PubMedGoogle Scholar
  131. 131.
    Gross, N.J., J. Cell Biol. 48:29 (1971).PubMedCrossRefGoogle Scholar
  132. 132.
    Kadenbach, B., Biochim. Biophys. Acta 186:399 (1969).Google Scholar
  133. 133.
    Kadenbach, B., in, “Biosynthesis of mitochondrial enzymes,” Edited by L. Ernster and Z. Drahota, Academic Press, 1969, p. 179.Google Scholar
  134. 134.
    Fletcher, M.J., and D.R. Sanadi, Biochim. Biophys. Acta 51:356 (1961).PubMedCrossRefGoogle Scholar
  135. 135.
    Beattie, D.S., R.E. Basford and S.B. Koritz, J. Biol. Chem. 242:3484 (1967).Google Scholar
  136. 136.
    Beattie, D.S., Biochem. Biophys. Res. Commun. 35:721 (1969).PubMedCrossRefGoogle Scholar
  137. 137.
    Bailey, E., C.B. Taylor and W. Bartley, Biochem. J. 104:1026 (1967).PubMedGoogle Scholar
  138. 138.
    Druyan, R., B. DeBernard and M. Rabinowitz, J. Biol. Chem. 244:5874 (1969).PubMedGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1972

Authors and Affiliations

  • Jean Himms-Hagen
    • 1
  1. 1.Department of BiochemistryUniversity of OttawaCanada
  2. 2.Medical Research Council of CanadaCanada

Personalised recommendations