Advertisement

Neurochemical Research

, Volume 21, Issue 9, pp 1075–1087 | Cite as

Aromaticl-amino acid decarboxylase: A neglected and misunderstood enzyme

  • M. D. Berry
  • A. V. Juorio
  • X. -M. Li
  • A. A. BoultonEmail author
Original Articles

Abstract

Classically, aromaticl-amino acid decarboxylase (AADC) has been regarded as an unregulated, rather uninteresting enzyme. In this review, we describe advances made during the past 10 years, demonstrating that AADC is regulated both pre- and post-translation. The significance of such regulatory mechanisms is poorly understood at present, but the presence of tissue specific control of expression raises the real possibility of AADC being involved in processes other than neurotrasmitter synthesis. We further discuss clinical and physiological situations in which such regulatory mechanisms may be important, including the intriguing possibility of AADC gene regulation being linked to that of factors thought to have a role in apoptosis and its prevention.

Key Words

Aromaticl-amino acid decarboxylase regulation molecular biology Parkinson's disease schizophrenia cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowsher, R. R., and Henry, D. P. 1986. Aromaticl-amino acid decarboxylase: biochemistry and functional significance. Pages 33–77,in Boulton, A. A., Baker, G. B. and Yu, P. H. (eds.), Neuromethods: Series 1: Neurochemistry, Neurotransmitter Enzymes, Humana Press, Clifton, New Jersey.Google Scholar
  2. 2.
    Sourkes, T. L. 1979. Dopa decarboxylase. Pages 123–132,in Horn, A. S., Kauf, J., and Westerink, B. H. C. (eds.), The Neurobiology of Dopamine, Academic Press, London.Google Scholar
  3. 3.
    Zhu, M.-Y., and Juorio, A. V. 1995. Aromaticl-amino acid decarboxylase: characterization and functional role. Gen. Pharmacol. 26:681–696.PubMedCrossRefGoogle Scholar
  4. 4.
    Boulton, A. A. 1976. Cerebral aryl alkyl aminergic mechanisms. Pages 21–39,in Usdin, E., and Sandler, M. (eds.), Trace Amines in the Brain, Marcel Dekker Inc., New York.Google Scholar
  5. 5.
    Paterson, I. A., Juorio, A. V., and Boulton, A. A. 1990. 2-Phenylethylamine: a modulator of catecholamine transmission in the central nervous system? J. Neurochem. 55:1827–1837.PubMedCrossRefGoogle Scholar
  6. 6.
    Juorio, A. V., and Paterson, I. A. 1990. Tryptamine may couple dopaminergic and serotonergic transmission in the brain. Gen. Pharmacol. 21:613–616.PubMedGoogle Scholar
  7. 7.
    Jones, R. S. J., and Boulton, A. A. 1980. Interactions betweenp-tyramine,m-tyramine or β-phenylethylamine and dopamine on single neurons in the cortex and caudate nucleus of the rat. Can. J. Physiol. Pharmacol. 58:222–227.PubMedGoogle Scholar
  8. 8.
    Hökfelt, T., Fuxe, K., and Goldstein, M. 1973. Immunohistochemical localization of aromaticl-amino acid decarboxylase (DOPA decarboxylase) in central dopamine and 5-hydroxytryptamine cell bodies of the rat. Brain Res. 53:175–180.PubMedCrossRefGoogle Scholar
  9. 9.
    Eaton, M. J., Gudehithlu, K. P., Quach, T., Silvia, C. P., Hadjiconstantinou, M., and Neff, N. H. 1993. Distribution of aromaticl-amino acid decarboxylase mRNA in mouse brain by in situ hybridization histology. J. Comp. Neurol. 337:640–654.PubMedCrossRefGoogle Scholar
  10. 10.
    Jaeger, C. B., Teitelman, G., Joh, T. H., Albert, V. R., Park, D. H., and Reis, D. J. 1983. Some neurons of the rat central nervous system contain AADC but not monoamine. Science 219:1233–1235.PubMedCrossRefGoogle Scholar
  11. 11.
    Jaeger, C. B., Ruggiero, D. A., Albert, V. R., Joh, T. H., and Reis, D. J. 1984. Immunocytochemical localization of aromaticl-amino acid decarboxylase. Pages 387–408,in Björklung, A. and Hökfelt, T. (eds.), Handbook of Chemical Neuroanatomy, Vol. 2: Classical Transmitters in the CNS, Elsevier, Amsterdam.Google Scholar
  12. 12.
    Nagatsu, I., Sakai, M., Yoshida, M., and Nagatsu, T. 1988. Aromaticl-amino acid decarboxylase-immunoreactive neurons in and around the cerebrospinal fluid-contacting neurons of the central canal do not contain dopamine or serotonin in the mouse and rat spinal cord. Brain Res. 475:91–102.PubMedCrossRefGoogle Scholar
  13. 13.
    Li, X.-M., Juorio, A. V., Paterson, I. A., Walz, W., Zhu, M.-Y., and Boulton, A. A. 1992. Gene expression of aromaticl-amino acid decarboxylase in rat cultured glial cells. J. Neurochem. 59: 1172–1175.PubMedCrossRefGoogle Scholar
  14. 14.
    Juorio, A. V., Li, X.-M., Walz, W., and Paterson, I. A. 1993. Decarboxylation of L-dopa by cultured mouse astrocytes. Brain Res. 626:306–309.PubMedCrossRefGoogle Scholar
  15. 15.
    Bouchard, S., and Roberge, A. G. 1979. Biochemical properties and kinetic parameters of DOPA-5HTP decarboxylase in brain, liver, and adrenals of cat. Can. J. Biochem. 57:1014–1018.PubMedCrossRefGoogle Scholar
  16. 16.
    Christenson, J. G., Dairman, W., and Udenfriend, S. 1970. Preparation and properties of a homogeneous aromaticl-amino acid decarboxylase from hog kidney. Arch. Biochem. Biophys. 141: 356–367.PubMedCrossRefGoogle Scholar
  17. 17.
    Lancaster, G. A., and Sourkes, T. L. 1972. Purification and properties of hog kidney 3,4-dihydroxyphenylalanine decarboxylase in the human brain. J. Neurochem. 19:1549–1559.CrossRefGoogle Scholar
  18. 18.
    Ando-Yamamoto, M., Hayashi, H., Sugiyama, T., Fukui, H., Watanabe, T., and Wada, H. 1987. Purification of L-DOPA decarboxylase from rat liver and production of polyclonal and monoclonal antibodies against it. J. Biochem. 101:405–414.PubMedGoogle Scholar
  19. 19.
    Dominici, P., Tancini, B., Barra, D., and Borri Voltattomi, C. 1987. Purification and characterization of rat liver 3,4-dihydroxyphenylalanine decarboxylase. Eur. J. Biochem. 169:209–213.PubMedCrossRefGoogle Scholar
  20. 20.
    Lindström, P., and Sehlin, J. 1983. Mechanisms underlying the effects of 5-hydroxytryptamine and 5-hydroxytryptophan in pancreatic islets. A proposed role for L-aromatic amino acid decarboxylase. Endocrinol. 112:1524–1529.CrossRefGoogle Scholar
  21. 21.
    Furuzawa, Y., Ohmori, Y., and Watanabe, T. 1994. Immunohistochemical colocalization of serotonin, aromaticl-amino acid decarboxylase and polypeptide hormones in islet A- and PP-cells of the cat pancreas. J. Vet. Med. Sci. 56:911–916.PubMedGoogle Scholar
  22. 22.
    Vieira-Coelho, M. A., and Soares-da-Silva, P. 1993. Dopamine formation, from its immediate precursor 3,4-dihydroxyphenylalanine along the rat digestive tract. Fundam. Clin. Pharmacol. 7: 235–243.PubMedCrossRefGoogle Scholar
  23. 23.
    Linnoila, R. I., Gazdar, A. F., Funa, K., and Becker, K. L. 1993. Long-term selective culture of hamster pulmonary endocrine cells. Anat. Rec. 236:231–240.PubMedCrossRefGoogle Scholar
  24. 24.
    Pearse, A. G. E. 1969. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the apud series and the embryologic, physiologic and pathologic implications of the concept. J. Histochem. Cytochem. 17:303–313.PubMedGoogle Scholar
  25. 25.
    Pearse, A. G. E. 1974. The apud cell concept and its implication in pathology. Pathol. Ann. 31:27–34.Google Scholar
  26. 26.
    Lauweryns, J. M., and van Ranst, L. 1988. Immunocytochemical localization of aromaticl-amino acid decarboxylase in human, rat, and mouse bronchopulmonary and gastrointestinal cells. J. Histochem. Cytochem. 36:1181–1186.PubMedGoogle Scholar
  27. 27.
    Hayashi, M., Yamaji, Y., Kitajami, W., and Saruta, T. 1990. Aromaticl-amino acid decarboxylase activity along the rat nephron. Am. J. Physiol. 258:F28-F33.PubMedGoogle Scholar
  28. 28.
    Isaac, J., Berndt, T. J., Chinnow, S. L., Tyce, G. M., Dousa, T. P., and Knox, F. G. 1992. Dopamine enhances the phosphaturic response to parathyroid hormone in phosphate-deprived rats. J. Am. Soc. Nephrol. 2:1423–1429.PubMedGoogle Scholar
  29. 29.
    Rahman, M. K., Nagatsu, T., and Kato, T. 1981. Determination of aromaticl-amino acid decarboxylase in serum of various animals by high-performance liquid chromatography with electrochemical detection. Life Sci. 28:485–492.PubMedCrossRefGoogle Scholar
  30. 30.
    Brodie, B. B., Kuntzman, R., Hirch, C. W., and Costa, E. 1962. Effects of decarboxylase inhibition on the biosynthesis of brain monoamines. Life Sci. 1:81–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Hadjiconstantinou, M., Rossetti, Z., Silvia, C., Krajnc, D., and Neff, N. H. 1988. Aromaticl-amino acid decarboxylase activity of the rat retina is modulated in vivo by environmental light. J. Neurochem. 51:1560–1564.PubMedCrossRefGoogle Scholar
  32. 32.
    Rossetti, Z., Silvia, C. P., Krajnc, D., Neff, N. H., and Hadjiconstantinou, M. 1990. Aromaticl-amino acid decarboxylase is modulated by D1 dopamine receptors in rat retina. J. Neurochem. 54:787–791.PubMedCrossRefGoogle Scholar
  33. 33.
    Rossetti, Z., Krajnc, D., Neff, N. H., and Hadjiconstantinou, M. 1989. Modulation of retinal aromaticl-amino acid decarboxylase via α2 adrenoceptors. J. Neurochem. 52:647–652.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhu, M.-Y., Juorio, A. V., Paterson, I. A., and Boulton, A. A. 1992. Regulation of aromaticl-amino acid decarboxylase by dopamine receptors in the rat brain. J. Neurochem. 58:636–641.PubMedCrossRefGoogle Scholar
  35. 35.
    Hadjiconstantinou, M., Wemlinger, T. A., Silvia, C. P., Hubble, J. P., and Neff, N. H. 1993. Aromaticl-amino acid decarboxylase activity of mouse striatum is modulated via dopamine receptors. J. Neurochem. 60:2175–2180.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhu, M.-Y., Juorio, A. V., Paterson, I. A., and Boulton, A. A. 1993. Regulation of striatal aromaticl-amino acid decarboxylase: Effects of blockade or activation of dopamine receptor. Eur. J. Pharmacol. 238:157–164.PubMedCrossRefGoogle Scholar
  37. 37.
    Wessel, T. C., and Joh, T. H. 1992. Parallel upregulation of catecholamine-synthesizing enzymes in rat brain and adrenal gland: effects of reserpine and correlation with immediate early genes. Mol. Brain Res. 15:349–360.PubMedCrossRefGoogle Scholar
  38. 38.
    Buckland, P. R., O'Donovan, M. C., and McGuffin, P. 1992. Changes in dopa decarboxylase mRNA but not tyrosine hydroxylase mRNA levels in rat brain following antipsychotic treatment. Psychophamacol. 108:98–102.CrossRefGoogle Scholar
  39. 39.
    Masserano, J. M., Vulliet, P. R., Tank, A. W., and Weiner, N. 1989. The role of tyrosine hydroxylase in the regulation of catecholamine synthesis. Pages 427–468,in Trendeleburg, U. and Weiner, N. (eds.), Catecholamine II, Handbook of Experimental Pharmacology, Vol., 90, Springer-Verlag, Berlin, New York.Google Scholar
  40. 40.
    Kang, U. J., and Joh, T. H. 1990. Deduced amino acid sequence of bovine aromaticl-amino acid decarboxylase: homology to other decarboxylase. Mol. Res. 8:83–87.CrossRefGoogle Scholar
  41. 41.
    Gudehithlu, K. P., Duchemin, A.-M., Silvia, C. P., Neff, N. H., and Hadjiconstantinou, M. 1992. Expression of cloned aromaticl-amino acid decarboxylase in Xenopus laevis oocytes. Neurochem. Int. 21:275–279.PubMedCrossRefGoogle Scholar
  42. 42.
    Kemp, B. E., and Pearson, R. B. 1990. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15:342–346.PubMedCrossRefGoogle Scholar
  43. 43.
    Young, E. A., Neff, N. H., and Hadjiconstantinou, M. 1993. Evidence for cyclic AMP-mediated increase of aromaticl-amino acid decarboxylase activity in the striatum and midbrain. J. Neurochem.. 60:2331–2333.PubMedCrossRefGoogle Scholar
  44. 44.
    Young, E. A., Neff, N. H., and Hadjiconstantinou, M. 1994. Phorbol ester administration transiently increases aromaticl-amino acid decarboxylase activity of the mouse striatum and midbrain. J. Neurochem. 63:694–697.PubMedCrossRefGoogle Scholar
  45. 45.
    Berry, M. D., Hadjiconstantinou, M., and Neff, N. H. 1995. Aromaticl-amino acid decarboxylase activity is regulated via phosphorylation. Soc. Neurosci. Abs. 446:10:1135.Google Scholar
  46. 46.
    Johansen, P. A., Jennings, I., Cotton, R. G. H., and Kuhn, D. M. 1995. Tryptophan hydroxylase is phosphorylated by protein kinase A. J. Neurochem. 65:882–888.PubMedCrossRefGoogle Scholar
  47. 47.
    Creese, I., Sibley, D. R., Hamblin, M. W., and Leff, S. E. 1983. The classification of dopamine receptors: relationship to radioligand binding. Ann. Rev. Neurosci. 6:43–71.PubMedCrossRefGoogle Scholar
  48. 48.
    Kebabian, J. W., Calne, D. B. 1979. Multiple receptors for dopamine. Nature 277:93–96.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhu, M.-Y., Jourio, A. V., Paterson, I. A., and Boulton, A. A. 1994. Regulation of aromaticl-amino acid decarboxylase in rat striatal synaptosomes: Effects of dopamine receptor agonists and antagonists. Brit. J. Pharmacol. 112:23–30.Google Scholar
  50. 50.
    Bender, D. A., and Coulson, W. F. 1972. Variations in aromatic amino acid decarboxylase activity towards DOPA and 5-hydroxytryptophan caused by pH changes and denaturation. J. Neurochem. 19:2801–2810.PubMedCrossRefGoogle Scholar
  51. 51.
    Sims, K. L., Davis, G. A., and Bloom, F. E. 1973. Activities of DOPA and 5-HTP decarboxylases in rat brain: Assay characteristics and distribution. J. Neurochem. 20:449–464.PubMedGoogle Scholar
  52. 52.
    Rahman, M. K., Nagatsu, T., and Kato, T. 1981. Aromaticl-amino acid decarboxylase activity in central and peripheral tissues and serum of rats withl-DOPA andl-5-hydroxytryptophan as substrates. Biochem. Pharmacol. 30:645–649.PubMedCrossRefGoogle Scholar
  53. 53.
    Siow, Y. L., and Dakshinamurti, R. 1985. Effects of pyridoxine deficiency on aromaticl-amino acid decarboxylase in adult rat brain. Exp. Brain Res. 59:575–581.PubMedCrossRefGoogle Scholar
  54. 54.
    Albert, V. R., Allen, J., and Joh, T. 1987. A single gene codes for aromaticl-amino acid decarboxylase in both neuronal and non-neuronal tissues. J. Biol. Chem. 262:9404–9411.PubMedGoogle Scholar
  55. 55.
    Rorsman, F., Husebye, E. S., Winqvist, O., Björk, E., Karlsson, F. A., and Kämpe, O. 1995. Aromatic-l-amino acid decarboxylase, a pyridoxal phosphate-dependent enzyme, is a β-cell autoantigen. Proc. Natl. Acad. Sci. U.S.A. 92:8626–8629.PubMedCrossRefGoogle Scholar
  56. 56.
    O'Malley, K. L., Harmon, S., Moffat, M., Uhland-Smith, A., and Wong, S. 1995. The human aromaticl-amino acid decarboxzylase gene can be alternatively spliced to generate unique protein isoforms. J. Neurochem. 65:2409–2416.PubMedCrossRefGoogle Scholar
  57. 57.
    Jafferji, S. S., Michell, R. H. 1976. Stimulation of phosphatidylinositol turn-over by histamine, 5-hydroxytryptamine and adrenaline in the longitudinal smooth muscle of guinea pig ileum. Biochem. Pharmacol. 25:1429–1430.PubMedCrossRefGoogle Scholar
  58. 58.
    Roth, B. L., and Chuang, D.-M. 1987. Multiple mechanisms of serotonergic signal transduction. Life Sci. 41:1051–1064.PubMedCrossRefGoogle Scholar
  59. 59.
    Lovenberg, W., Weissbach, H., and Udenfriend, S. 1962. Aromaticl-amino acid decarboxylase. J. Biol. Res. 237:89–93.Google Scholar
  60. 60.
    Bowsher, R. R., and Henry, D. P. 1983. Decarboxylation ofp-tyrosine: a potential source ofp-tyramine in mammalian tissues. J. Neurochem. 40:992–1002.PubMedCrossRefGoogle Scholar
  61. 61.
    Juorio, A. V., and Yu, P. H. 1985. Effects of benzenc and other organic solvents on the decarboxylation of some brain aromatic-l-amino acids. Biochem. Pharmacol. 34:1381–1387.PubMedCrossRefGoogle Scholar
  62. 62.
    Cumming, P., Kuwabara, H., Ase, A., and Gjedde, A. 1995. Regulation of DOPA decarboxylase activity in brain of living rat. J. Neurochem. 65:1381–1390.PubMedCrossRefGoogle Scholar
  63. 63.
    Gjedde, A., Reith, J., Dyve, S., Leger, G., Guttman, M., Diksic, M., Evans, A., and Kuwabara, H. 1991. Dopa decarboxylase activity of the living human brain. Proc. Natl. Acad. Sci. U.S.A. 88:2721–2725.PubMedCrossRefGoogle Scholar
  64. 64.
    Kuwabara, H., Cumming, P., Reith, J., Leger, G., Diksic, M., Evans, A. C., and Gjedde, A. 1993. Human striatal L-dopa decarboxylase activity estimated in vivo using 6-[18F]fluoro-dopa and positron emission tomography: error analysis and application to normal subjects. J. Cereb. Blood Flow Metab. 13:43–56.PubMedGoogle Scholar
  65. 65.
    Gjedde, A., Léger, G. C., Cumming, P., Yasuhara, Y., Evans, A. C., Guttman, M., and Kuwabara, H. 1993. Striatal L-DOPA decarboxylase activity in Parkinson's disease in vivo: implications for the regulation of dopamine synthesis. J. Neurochem. 61: 1538–1541.PubMedGoogle Scholar
  66. 66.
    Reith, J., Benkelfat, C., Sherwin, A., Yasuhara, Y., Kuwabara, H., Andermann, F., Bachneff, S., Cumming, P., Diksic, M., Dyve, S. E., Etienne, P., Evans, A. C., Lal, S., Shevel, M., Savard, G., Wong, D. F., Chouinard, G., and Gjedde, A. 1994. Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc. Natl. Acad. Sci. U.S.A. 91:11651–11654.PubMedCrossRefGoogle Scholar
  67. 67.
    Jahng, J. W., Wessel, T. C., Houpt, T. A., Son, J. H., and Joh, T. H. 1996. Alternate promoters in the rat aromaticl-amino acid decarboxylase gene for neuronal and non-neuronal expression: an in situ hybridization study. J. Neurochem. 66:14–20.PubMedCrossRefGoogle Scholar
  68. 68.
    Sumi-Ichinose, C., Hasegawa, S., Ichinose, H., Sawada, H., Kobayashi, K., Sakai, M., Fujii, T., Nomura, H., Nomura, T., Nagatsu, I., Hagino, Y., Fujita, K., and Nagatsu, T. 1995. Analysis of the alternative promoters that regulate tissue-specific expression of human aromaticl-amino acid decarboxylase. J. Neurochem. 64:514–524.PubMedCrossRefGoogle Scholar
  69. 69.
    Hahn, S. L., Hahn, M., Kan, U. J., and Joh, T. H. 1993. Structure of the rat aromaticl-amino acid decarboxylase gene: evidence for an alternative promoter usage. J. Neurochem. 60:1058–1064.PubMedCrossRefGoogle Scholar
  70. 70.
    Sumi-Ichinose, C., Ichinose, H., Takahashi, E., Hori, T., and Nagatsu, T. 1992. Molecular cloning of genomic DNA and chromosomal assigment of the gene for human aromaticl-amino acid decarboxylase, the enzyme for catecholamine and serotonin synthesis. Biochem. 31:2229–2238.CrossRefGoogle Scholar
  71. 71.
    Ichinose, H., Sumi-Ichinose, C., Ohye, T., Hagino, Y., Fujita, K., and Nagatsu, T. 1992. Tissue-specific alternative splicing of the first exon generates two types of mRNAs in human aromaticl-amino acid decarboxylase. Biochem. 31:11546–11550.CrossRefGoogle Scholar
  72. 72.
    Krieger, M., Coge, F., Gros, F., and Thibault, J. 1991. Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin. Proc. Natl. Acad. Sci. U.S.A. 88:2161–2165.PubMedCrossRefGoogle Scholar
  73. 73.
    Albert, V. R., Lee, M. R., Bolden, A. H., Wurzburger, R. J., and Aguanno, A. 1992. Distinct promoters direct neuronal and non-neuronal expression of rat aromaticl-amino acid decarboxylase. Proc. Natl. Acad. Sci. U.S.A. 89:12053–12057.PubMedCrossRefGoogle Scholar
  74. 74.
    Le Van Thai, A., Coste, E., Allen, J. M., Palmiter, R. D., and Weber, M. J. 1993. Identification of a neuron-specific promoter of human aromaticl-amino acid decarboxylase gene. Mol. Brain Res. 17:227–238.CrossRefGoogle Scholar
  75. 75.
    Eveleth, D. D., Gietz, R. D., Spencer, C. A., Nargang, E. E., Hodgetts, R. B., and Marsh, J. L. 1986. Sequence and structure of the dopa decarboxylase gene of Drosophila: evidence for novel RNA splicing variants. EMBO J. 5:2663–2672.PubMedGoogle Scholar
  76. 76.
    Morgan, B. A., Johnson, W. A., and Hirsh, J. 1986. Regulated splicing produces different forms of dopa decarboxylase in the central nervous system and hypoderm of Drosophila melanogaster. EMBO J. 5:3335–3342.PubMedGoogle Scholar
  77. 77.
    Scholnick, S. B., Caruso, P. A., Klemencic, J., Mastick, G. S., Mauro, C., and Rotenborg, M. 1991. Mutations within the Ddc promoter alter its neuron-specific pattern of expression. Dev. Biol. 146:423–437.PubMedCrossRefGoogle Scholar
  78. 78.
    Mastick G. S., and Scholnick, S. B. 1992. Repression and activation of the Drosophila dopa decarboxylase gene in glia. Mol. Cell. Biol. 12:5659–5666.PubMedGoogle Scholar
  79. 79.
    Treacy, M. N., He, X., and Rosenfeld, M. G. 1991. I-POU: a POU-domain protein that inhibits neuron-specific gene activation. Nature 350:577–584.PubMedCrossRefGoogle Scholar
  80. 80.
    Lundell, M. J., and Hirsh, J. 1992. The zfh-2 gene product is a potential regulator of neuron-specific dopa decarboxylase gene expression in Drosophila. Dev. Biol. 154:84–94.PubMedCrossRefGoogle Scholar
  81. 81.
    Walz, W. 1989. Role of glial cells in the regulation of the brain ion microenvironment. Prog. Neurobiol. 33:309–333.PubMedCrossRefGoogle Scholar
  82. 82.
    Chireux, M., Raynal, J. F., Le Van Thai, A., Cadas, H., Bernard, C., Martinou, I., Martinou, J. C., and Weber, M. J. 1994. Multiple promoters of human choline acetyltransferase and aromaticl-amino acid decarboxylase genes. J. Physiol. (Paris) 88:215–227.CrossRefGoogle Scholar
  83. 83.
    Kim, K.-T., Park, D. H., and Joh, T. H. 1993. Parallel up-regulation of catecholamine biosynthetic enzymes by dexamethasone in PC 12 cells. J. Neurochem. 60:946–951.PubMedCrossRefGoogle Scholar
  84. 84.
    Li, X.-M., Juorio, A. V., and Boulton, A. A. 1994. Induction of aromaticl-amino acid decarboxylase mRNA by interleukin-1β and prostaglandin E2 in PC12 pheochromocytoma cells. Neurochem. Res. 19:591–595.PubMedCrossRefGoogle Scholar
  85. 85.
    Li, X.-M., Juorio, A. V., Paterson, I. A., Zhu, M.-Y., and Boulton, A. A. 1992. Specific irreversible MAO B inhibitors stimulate gene expression of aromaticl-amino acid decarboxylase in PC12 cells. J. Neurochem. 59:2324–2327.PubMedCrossRefGoogle Scholar
  86. 86.
    Li, X.-M., Juorio, A. V., and Boulton, A. A. 1993. NSD-1015 alters the gene expression of aromaticl-amino acid decarboxylase in PC12 pheochromocytoma cells. Neurochem. Res. 18: 915–919.PubMedCrossRefGoogle Scholar
  87. 87.
    Hadjiconstantinou, M., Rossetti, Z. L., Wemlinger, T. A., and Neff, N. H. 1995. Dizocilpine enhances striatal tyrosine hydroxylase and aromaticl-amino acid decarboxylase activity. Eur. J. Pharmacol. Mol. Pharmacol. Sec. 289:97–101.CrossRefGoogle Scholar
  88. 88.
    Cho, S., Hadjiconstantinou, M., and Neff, N. H. 1995. Modulation of tyrosine hydroxylase and aromaticl-amino acid decarboxylase in mouse striatum after inhibition of monoamine oxidase. Soc. Neurosci. Abs. 446.9:1135.Google Scholar
  89. 89.
    Buckland, P. R., Spurlock, G., and McGuffin, P. 1996. Amphetamine and vigabatrin down regulate aromaticl-amino acid decarboxylase mRNA levels. Mol. Brain Res. 35:69–76.PubMedCrossRefGoogle Scholar
  90. 90.
    Li, X.-M., Qi, J., Juorio, A. V., and Boulton, A. A. 1994. NGF differentially regulates the gene expression of aromaticl-amino acid decarboxylase and tyrosine hydroxylase in PC12 cells. 6th Amine Oxidase Workshop and 5th Trace Amine Conference. Saskatoon, Saskatchewan.Google Scholar
  91. 91.
    Ip, N. Y., Nye, S. H., Boulton, T. G., Davis, S., Taga, T., Li, Y., Birren, S. J., Yasukawa, K., Kishimoto, T., Anderson, D. J., Stahl, N., and Yancopoulos, G. D. 1992. CNTF and LIF act on neuronal cells via shared signalling pathways that involve the IL-6 signal transduction receptor component gp130. Cell 69:1121–1132.PubMedCrossRefGoogle Scholar
  92. 92.
    Taga, T., Hibi, M., Hirata, Y., Yamasaki, K., Yasukawa, K., Matsuda, T., Hirano, T., and Kishimoto, T. 1989. Interleukin-6 triggers the association of its receptor with a possible signal transducer gp 130. Cell 58:573–581.PubMedCrossRefGoogle Scholar
  93. 93.
    Nappi, A. J., Carton, Y., and Vass, E. 1992. Reduced cellular immune competence of a temperature-sensitive dopa decarboxylase mutant strain of Drosophila melanogaster against the parasite Leptopilina boulardi. Comp. Biochem. Physiol. B. 101:453–460.PubMedCrossRefGoogle Scholar
  94. 94.
    Huo, T. L., Grenader, A., Blandina, P., and Healy, D. P. 1991. Prostaglandin E2 production in rat IMCD cells. II. Possible role of locally formed dopamine. Am. J. Physiol. 261:F655-F662.PubMedGoogle Scholar
  95. 95.
    Berry, M. D., Juorio, A. V., and Paterson, I. A. 1994. Possible mechanisms of action of (−)deprenyl and other MAO-B inhibitors in some neurologic and psychiatric disorders. Prog. Neurobiol. 44:141–161.PubMedCrossRefGoogle Scholar
  96. 96.
    Li, X.-M., Juorio, A. V., and Boulton, A. A. 1995. Some new mechanisms underlying the actions of (−)-deprenyl: possible relevance to neurodegeneration, Prog. Brain Res. 106:99–112.PubMedCrossRefGoogle Scholar
  97. 97.
    Yu, P. H., Davis, B. A., Zhang, X., Zuo, D. M., Fang, J., Lai, C. T., Li, X. M., Paterson, I. A., and Boulton, A. A. 1995. Neurochemical, neuroprotective and neurosescue effects of aliphaticN-methylpropargylamines: new MAO-B inhibitors without amphetamine like properties. Prog. Brain Res. 106:113–122.PubMedGoogle Scholar
  98. 98.
    Finnegan, K. T., Kratt, J. J., Irwin, I., DeLanney, L. E., and Langston, J. W. 1990. Protection against DSP-4 induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. Eur. J. Pharmacol. 184:119–126.PubMedCrossRefGoogle Scholar
  99. 99.
    Tatton, W. G., and Greenwood, C. E. 1991. Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J. Neurosci. Res. 30:666–672.PubMedCrossRefGoogle Scholar
  100. 100.
    Salo, P. T., and Tatton, W. G. 1992. Deprenyl reduces cell death of motoneurons caused by axotomy. J. Neurosci. Res. 31:394–400.PubMedCrossRefGoogle Scholar
  101. 101.
    Ansari, K. S., Tatton, W. G., Yu, P. H., and Kruck, T. P. A. 1993. Rescue of axotomised immature rat facial motoneurons byR(−)deprenyl: stereospecificity and independence from monoamine oxidase inhibition. J. Neurosci. 13:4042–4053.PubMedGoogle Scholar
  102. 102.
    Shen, J., Beall, C. J., and Hirsh, J. 1993. Tissue-specific alternative splicing of the Drosophila dopa decarboxylase gene is affected by heat shock. Mol. Cell. Biol. 13:4549–4555.PubMedGoogle Scholar
  103. 103.
    Spencer, C. A., Gietz, R. D., and Hodgetts, R. B. 1986. Overlapping transcription units in the dopa decarboxylase region ofDrosophila, Nature 322:279–281.PubMedCrossRefGoogle Scholar
  104. 104.
    Yuan, J., Shaam, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. 1993. The C.elegans cell death geneced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75:641–652.PubMedCrossRefGoogle Scholar
  105. 105.
    Dinarello, C. A. 1994. The interleukin-1 family: 10 years of discovery. FASEB J. 8:1314–1325.PubMedGoogle Scholar
  106. 106.
    Miura, M., Zhu, H., Rotello, R., Hartweig, E. A., and Yuan, J. 1993. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660.PubMedCrossRefGoogle Scholar
  107. 107.
    Bendtzen, K., Mandrup-Poulsen, T., Nerup, J., Nielsen, J. H., Dinarello, C. A., and Svenson, M. 1986. Cytotoxicity of human pI7 interleukin-1 for pancreatic islets of Langerhans, Science 232:1545–1547.PubMedCrossRefGoogle Scholar
  108. 108.
    Belizario, J. E., and Dinarello, C. A. 1991. Interleukin 1, interleukin 6, tumor necrosis factor, and transforming growth factor β increase cell resistance to tumor necrosis factor cytotoxicity by growth arrest in the G1 phase of the cell cycle. Cancer Res. 51:2379–2385.PubMedGoogle Scholar
  109. 109.
    Vassort, C., Riviere, M., Bruneau, G., Gros, F., Thibault, J., Levan, G., Szpirer, J., and Szpirer, C. 1993. Assignment of the rat genes coding for dopa decarboxylase (DDC) and glutamic acid decarboxylases (GAD1 and GAD2). Mamm. Genome 4:202–206.PubMedCrossRefGoogle Scholar
  110. 110.
    Bruneau, G., Thibault, J., Gros, F., and Mattei, M. G. 1992. Mapping of the dopa decarboxylase gene to the 11A band of the murine genome. Biochem. Biophys. Res. Commun. 186:926–930.PubMedCrossRefGoogle Scholar
  111. 111.
    Scherer, L. J., McPherson, J. D., Wasmuth, J. J., and Marsh, J. L. 1992. Human dopa decarboxylase: localization to human chromosome 7p11 and characterization of hepatic cDNAs. Genomics 13:469–471.PubMedCrossRefGoogle Scholar
  112. 112.
    Bray, S. J., and Kafatos, F. C. 1991. Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila. Genes Dev. 5:1672–1683.PubMedGoogle Scholar
  113. 113.
    O'Keefe, S., Schouls, M., and Hodgetts, R. 1995. Epidermal cell-specific quantitation of dopa decarboxylase mRNA in Drosophila by competitive RT-PCR: an effect of Broad-Complex mutants. Dev. Genet. 16:77–84.PubMedCrossRefGoogle Scholar
  114. 114.
    Hiruma, K., Carter, M. S., and Riddiford, L. M. 1995. Characterization of the dopa decarboxylase gene of Manduca sexta and its suppression by 20-hydroxyecdysone. Dev. Biol. 169:195–209.PubMedCrossRefGoogle Scholar
  115. 115.
    Shen, J., and Hirsh, J. 1994. cis-Regulatory sequences responsible for alternative splicing of the Drosophila dopa decarboxylase gene. Mol. Cell. Biol. 14:7385–7393.PubMedGoogle Scholar
  116. 116.
    Hodgetts, R. B., Patel, M. S., Piorecky, J., Swan, A. D., and Spencer, C. A. 1994. Identification of a sequence motif upstream of the Drosophila dopa decarboxylase gene that enhances heterologous gene expression. Genome. 37:526–534.PubMedGoogle Scholar
  117. 117.
    Marra, M. A., Prasad, S. S., and Baillie, D. L. 1993. Molecular analysis of two genes between let-653 and let-56 in the unc-22 (IV) region of Caenorhabditis elegans. Mol. Gen. Genet. 236: 289–298.PubMedCrossRefGoogle Scholar
  118. 118.
    Paterson, I. A., Juorio, A. V., Berry, M. D., and Zhu, M.-Y. 1991. Inhibition of monoamine oxidase-B by (−)-deprenyl potentiates neuronal responses to dopamine agonists but does not inhibit dopamine catabolism in the rat striatum. J. Pharmacol. Exp. Ther. 258:1019–1026.PubMedGoogle Scholar
  119. 119.
    Berry, M. D., Scarr, E., Zhu, M.-Y., Paterson, I. A., and Juorio, A. V. 1994. The effects of administration of monoamine oxidase-B inhibitors on rat striatal neuron responses to dopamine. Brit. J. Pharmacol. 113:1159–1166.Google Scholar
  120. 120.
    Misu, Y., Ueda, H., and Goshima, Y., 1995. Neurotransmitter-like actions of L-DOPA. Adv. Pharmacol. 32:427–459.PubMedCrossRefGoogle Scholar
  121. 121.
    Young, E. A., Neff, N. H., and Hadjiconstantinou, M. 1995. Second messanger modulation of L-aromatic amino acid decarboxylase and tyrosine hydroxylase in normal and MPTP-lesioned mouse striatum. Soc. Neurosci. Abs. 491, 11:1258.Google Scholar
  122. 122.
    Marsden, C. D., and Parks, J. D. 1976. “On-off” effects in patients with Parkinson's disease on chronic levodopa therapy. Lancet 1:292–296.PubMedCrossRefGoogle Scholar
  123. 123.
    Kopin, I. J. 1993. Parkinson's disease: past, present, and future. Neuropsychopharmacol. 9:1–12.Google Scholar
  124. 124.
    Birkmayer, W., Riederer, P., Youdim, M. B. H., and Linauer, W. 1975. The potentiation of the anti-akinetic effect after 1-dopa treatment by an inhibitor of MAO-B, deprenyl, J. Neural Transm. 36:303–326.PubMedCrossRefGoogle Scholar
  125. 125.
    Lees, A. J. 1995. Comparison of therapeutic effects and mortality data of levodopa and levedopa combined with selegiline in patients with early, mild Parkinson's disease. Brit. Med. J. 311: 1602–1607.PubMedGoogle Scholar
  126. 126.
    Klockgether, T., and Turski, L. 1990. NMDA antagonists potentiate antiparkinsonian actions of L-DOPA in monoamine depleted rats. Ann. Neurol. 28:539–546.PubMedCrossRefGoogle Scholar
  127. 127.
    Seeman, P. 1992. Dopamine receptor sequences: therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacol. 7:261–284.Google Scholar
  128. 128.
    Sedvall, G., and Farde, L. 1995. Chemical brain anatomy in schizophrenia. Lancet 346:743–749.PubMedCrossRefGoogle Scholar
  129. 129.
    Randrup, A., and Munkvad, I. 1972. Evidence indicating an association between schizophrenia and dopaminergic hyperactivity in the brain. Orthomol. Psychiat. 1:2–7.Google Scholar
  130. 130.
    Davis, K. L., Kahn, R. S., Ko, G., and Davidson, M. 1991. Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiat. 148:1474–1486.PubMedGoogle Scholar
  131. 131.
    Goldstein, M., and Deutch, A. Y. 1992. Dopaminergic mechanisms in the pathogenesis of schizophrenia. FASEB J. 6:2413–2421.PubMedGoogle Scholar
  132. 132.
    Olney, J. W., and Farber, N. B. 1995. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiat. 52:998–1007.PubMedGoogle Scholar
  133. 133.
    Watanabe, H., Imaizumi, M., Ojika, T., Abe, T., Hida, T., and Kato, K. 1994. Evaluation of biological characteristics of lung cancer by the human 28 kDa vitamin D-dependent calcium binding protein, calbindin-D28k. Jap. J. Clin. Oncol. 24:121–127.Google Scholar
  134. 134.
    Koh, T., Yokuta, J., Ookawa, K., Kina, T., Koshimura, K., Miwa, S., and Ariyasu, T. 1995. Alternative splicing of the neurofibromatosis 1 gene correlates with growth patterns and neuroendocrine properties of human small-cell lung-carcinoma cells. Int. J. Cancer 60:843–847.PubMedGoogle Scholar
  135. 135.
    Lan, M. S., Russell, E. K., Lu, J., Johnson, B. E., and Notkins, A. L. 1993. IA-1, a new marker for neuroendocrine differentiation in human lung cancer cell lines. Cancer Res. 53:4169–4171.PubMedGoogle Scholar
  136. 136.
    Gilbert, J. A., Bates, L. A., and Ames, M. M. 1995. Elevated aromatic-l-amino acid decarboxylase in human carcinoid tumors. Biochem. Pharmacol. 50:845–850.PubMedCrossRefGoogle Scholar
  137. 137.
    Waymire, J. C., and Gilmer-Waymire, K. 1978. Adrenergic enzymes in cultured mouse neuroblastoma: absence of detectable aromatic-l-amino acid decarboxylase. J. Neurochem. 31:693–698.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. D. Berry
    • 1
  • A. V. Juorio
    • 1
  • X. -M. Li
    • 1
  • A. A. Boulton
    • 1
    Email author
  1. 1.Neuropsychiatry Research Unit, Department of PsychiatryUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations