Neurochemical Research

, Volume 21, Issue 10, pp 1167–1171

Effect of diabetes on levels and uptake of putative amino acid neurotransmitters in rat retina and retinal pigment epithelium

  • Carmen Vilchis
  • Rocío Salceda
Original Articles

Abstract

Free amino acid levels and high affinity uptake of glutamate, aspartate γ-aminobutyrate, glycine and taurine were studied in retina and retinal pigment epithelium of streptozotocin diabetic rats. Results show that experimental diabetes produces a generalized fall in the content of free amino acids in both retina and retinal pigment epithelium. With regard to the high affinity uptake, in the two tissues of diabetic animals showed decreased aspartate uptake, enhanced taurine and γ-aminobutyrate uptake, whereas that of glycine and glutamate was unchanged. These results might suggest that diabetes causes alterations of specific amino acid transport systems and/or alterations of some cell populations.

Key words

Retina retinal pigment epithelium streptozotocin diabetes free amino acids uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beck, T., and Lund-Andersen, H. 1990. Localised-retinal barrier leakage and retinal light sensitivity in diabetic retinopathy. Br. J. Ophthalmol. 74:388–392.Google Scholar
  2. 2.
    Vinores, S. A., and Campochiaro, P. A. 1989. Prevention or moderation of some ultrastructural changes in the RPE and retina of galactosemic rats by aldose reductase inhibition. Exp Eye Res. 49:495–510.PubMedCrossRefGoogle Scholar
  3. 3.
    Holopigian, K., Seiple, W., Lorenzo, M., and Carr, R. 1992. A comparison of photic and scotopic electroretinographic changes in early diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 33:2773–2780.Google Scholar
  4. 4.
    Hood, D. C., and Birch, D. G. 1990. The a-wave of the human ERG and rod receptor function. Invest. Ophthalmol. Vis. Sci. 31: 2070–2081.PubMedGoogle Scholar
  5. 5.
    Moloney, J., and Drury, M. I. 1982. Retinopathy and retinal function in insulin-dependent diabetes mellitus. Br. J. Ophthalmol. 66: 759–761.PubMedGoogle Scholar
  6. 6.
    Massey, S. 1990. Cell types using glutamate as a neurotransmitter in the vertebrate retina. Pages 399–425, in Osborne, N. N., and Chader, G. J. (eds.), Progress in retinal research, Vol. 9, Pergamon Press, Oxford.Google Scholar
  7. 7.
    Marc, R. E. 1985. The Role of glycine in retinal circuitry Pages 119–258, in Morgan, W. W. (ed.), Retinal transmitters and modulators: models for the brain, Vol. 1, CRC. Press, Boca Raton. Fl.Google Scholar
  8. 8.
    Yazulla, S. 1986. GABAergic mechanisms in the retina. Pages 1–51, in Osborne, N. N., and Chader, G. J. (eds.), Progress in retinal research, Vol. 5, Pergamn Press, Oxford.Google Scholar
  9. 9.
    Macaione, S., Ruggeri, P., and Tucci, G. 1974. Free amino acids in developing rat retina. J. Neurochem. 22:887–891.PubMedCrossRefGoogle Scholar
  10. 10.
    Hayes, K. C., Carey, R. E., and Schmidt, S. Y. 1975. Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951.PubMedCrossRefGoogle Scholar
  11. 11.
    Logan W. J., and Snyder, S. H. 1971. Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature 234:297–299.PubMedCrossRefGoogle Scholar
  12. 12.
    Mackerer, C. R., Paquet, R. J., Mehlman, M. A., and Tobin, R. B. 1971. Oxidation and phosphorylation in liver mitochondria from alloxan and streptozotocin diabetic rats. Proc. Soc. Exp. Biol. 137:992–995.Google Scholar
  13. 13.
    Salceda, R., and Saldaña, M. R. 1993. Glutamate and taurine uptake by retinal pigment epithelium during rat development. Comp. Biochem. Physiol. 104C:311–316.Google Scholar
  14. 14.
    Geddes, J. W., and Wood, J. D. 1984. Changes in the amino acid content of nerve ending (synaptosomes) induced by drugs that alter the metabolism of glutamate and γ-aminobutyric acid. J. Neurochem. 42:16–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Lenda, K., and Svenneby, G. 1980. Rapid high-performance liquid chromatographic determination of amino acids in synaptosomal extracts. J. Chromatogr. 198:516–519.PubMedCrossRefGoogle Scholar
  16. 16.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 93:265–275.Google Scholar
  17. 17.
    Salceda, R., and Vilchis, M. C. 1994. High-affinity uptake of glutamate and aspartate in the developing rat retina. Curr Eye Res. 13:297–302.PubMedGoogle Scholar
  18. 18.
    Neal, M. J. 1976. Amino acid transmitter substances in the vertebrate retina. Gen. Pharmac. 7:321–332.Google Scholar
  19. 19.
    Brosman, J. T., Man, K. W., Hall, D. E., Colbourne, S. A., and Bosnan, M. E. 1983. Interorgan metabolism of amino acids in streptozotocin diabetic ketoacidotic rat. Am. J. Physiol. 244:E151-E158.Google Scholar
  20. 20.
    Fernstrom, M. H., Volk, E. A., Fernstrom, J. D., and Iuvone, M. 1986. Effect of tyrosine administration on DOPA accumulation in light and dark-adapted retinas from normal and diabetic rats. Life Sci. 39:2049–2057.PubMedCrossRefGoogle Scholar
  21. 21.
    Berger, S. J., McDaniel, M. L., Carter, J. C., and Lowry, O. H. 1977. Distribution of four potential transmitter amino acids in monkey retina. J. Neurochem. 28:159–163.PubMedCrossRefGoogle Scholar
  22. 22.
    Ross, C. D., Parli, J. A., and Godfrey, D. A. 1989. Quantitative distribution of six amino acids in rat retinal layers. Vision Res. 29:1079–1084.PubMedCrossRefGoogle Scholar
  23. 23.
    Orr, H. T., Cohen, A. I., and Lowry, O. H. 1976. The distribution of taurine in the vertebrate retina. J. Neurochem. 26:609–611.PubMedCrossRefGoogle Scholar
  24. 24.
    Wassle, H., and Boycot, B. B. 1991. Functional architecture of the mammalian retina. Physiol. Rev. 71:447–480.PubMedGoogle Scholar
  25. 25.
    Ross, C. D., and Godfrey, D. A. 1985 Distributions of aspartate aminotransferase and malate dehydrogenase activities in rat retinal layers. J. Histochem. Cytochem. 33: 624–630.PubMedGoogle Scholar
  26. 26.
    Brew, H., and Attwell, D. 1987. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature 327:707–709.PubMedCrossRefGoogle Scholar
  27. 27.
    Reddy, V. N. 1992. Study of the polyol pathway and cell permeability in human lens and retinal pigment epithelium in tissue culture. Invest. Ophthalmol. Vis. Sci. 33:2334–2339.PubMedGoogle Scholar
  28. 28.
    Miller, S., and Steinberg, R. H. 1976. Transport of taurine, L-methionine and 3-0-methyl-D-glucose across frog retinal pigment epithelium. Exp. Eye. Res. 23:177–189.PubMedCrossRefGoogle Scholar
  29. 29.
    Lajtha, A., and Sershen H. 1979. Alterations of amino acid transport in the central nervous system Pages 119–132, in Cunha-Vaz, J. G. (ed), The Blood-retinal barriers, Plenum Press, New York.Google Scholar
  30. 30.
    Gilles, R., Kleinzeller, A., and Bolis, L. (eds) 1987. Current Topics in Membrane Transport. Cell volume control: fundamental and comparative aspects in animal cells. Vol. 30, Academic Press, San Diego California.Google Scholar
  31. 31.
    Morán, J., Hurtado, S., and Pasantes-Morales, H. 1991. Similar properties of taurine release induced by potassium and hyposmolarity in the rat retina. Exp. Eye Res. 53:347–352.PubMedCrossRefGoogle Scholar
  32. 32.
    Marc, R. E., and Lam, D. M. K. 1981. Uptake of aspartic and glutamic acid by goldfish photoreceptors. Proc. Natl. Acad. Sci. U.S.A. 78:7185–7189.PubMedCrossRefGoogle Scholar
  33. 33.
    Sarthy, P. V., Hendrickson, A. E., and Wu, J. Y. 1986. L-Glutamate: a neurotransmitter candidate for cone photoreceptors in the monkey retina. J. Neurosci. 6:637–643.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Carmen Vilchis
    • 1
  • Rocío Salceda
    • 1
  1. 1.Departmento NeurocienciasInstituto de Fisiologia Cellular, UNAMMexicoMéxico

Personalised recommendations