Neurochemical Research

, Volume 21, Issue 11, pp 1425–1435 | Cite as

Psychomotor stimulant- and opiate-induced c-fos mRNA expression patterns in the rat forebrain: Comparisons between acute drug treatment and a drug challenge in sensitized animals

  • Eileen J. Curran
  • Huda Akit
  • Stanley J. Watson
Reward/Drug Abuse Mechanisms

Abstract

Amphetamine-, cocaine-, and morphine-induced c-fos expression patterns were examined following an injection protocol that has previously been shown to produce behavioral sensitization and enhanced dopamine release in the striatal complex. Drug-specific c-fos patterns were observed in both acute and sensitization injection paradigms. A sensitization pretreatment schedule did, however, alter the c-fos expression patterns induced by all the drugs in the caudate putamen, nucleus accumbens, and the cerebral cortex. In some striatal and cortical regions, there was an increase or recruitment of cells expressing c-fos whereas in others there was an apparent decrease or inhibition. The somatosensory cortex was one area where pretreatment with all three drugs increased c-fos expression. The results suggest that the neuronal networks that are modulated by systemic drug injections in the sensitized animal differ from those affected by the initial drug exposure; areas of overlap may indicate common ‘sensitization’ circuits.

Key Words

Striatum somatosensory cortex amphetamine cocaine morphine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kalivas, P. W., and Duffy, P. 1988. Effects of daily cocaine and morphine treatment on somatodendritic and terminal field dopamine release. J. Neurochem. 50:1498–1504.PubMedCrossRefGoogle Scholar
  2. 2.
    Kalivas, P. W., and Duffy, P. 1989. Similar effect of daily cocaine and stress on mesocorticolimbic dopamine neurotransmission in the rat. Biol. Psychiatry. 25:913–928.PubMedCrossRefGoogle Scholar
  3. 3.
    Kalivas, P. W., and Stewart, J. 1991. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. 16:223–244.CrossRefGoogle Scholar
  4. 4.
    Acquas, E., and Di Chiara, G. 1992. Depression of mesolimbic dopamine transmission and sensitization to morphine during opiate abstinence. J. Neurochem. 58:1620–1625.PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper, S. J. 1991. Interaction between endogenous opioids and dopamine: implications for reward and aversion. pp 331–366, in Willner, P. and Scheel-Kruger, J. (eds), The Mesolimbic Dopamine System: From Motvation to Action, John Wiley & Sons Ltd., West Sussex, England.Google Scholar
  6. 6.
    Koob, G. F. 1992. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13:177–184.PubMedCrossRefGoogle Scholar
  7. 7.
    Cador, M., Bjijou, Y., and Stinus, L. 1995. Evidence of a complete independence of the neurobiological substrates for the induction and expression of behavioral sensitization to amphetamine. Neuroscience. 65:385–395.PubMedCrossRefGoogle Scholar
  8. 8.
    Morgan, J. I., and Curran, T. 1991. Stimulus-transcription coupling in the nervous system. Annu. Rev. Neurosci. 14:421–452.PubMedCrossRefGoogle Scholar
  9. 9.
    Hyman, S. E., Kosofsky, B. E., Nguyen, T. V., Cohen, B. M., and Comb, M. J. 1993. Everything activates c-fos—how can it matter? NIDA Res. Monogr. 125:25–37.PubMedGoogle Scholar
  10. 10.
    Chang, S. L., Squinto, S. P., and Harlan, R. E. 1988. Morphine activation ofc-fos expression in rat brain. Biochem. Biophys. Res. Comm. 157:698–704.PubMedCrossRefGoogle Scholar
  11. 11.
    Graybiel, A. M., Moratalla, R., and Robertson, H. A. 1990. Amphetamine and cocaine induce drug-specific activation of thec-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl. Acad. Sci. USA 87:6912–6916.PubMedCrossRefGoogle Scholar
  12. 12.
    Moratalla, R., Vickers, E. A., Robertson, H. A., Cochran, B. H., and Graybiel, A. M. 1993. Coordinate expression of c-fos andjun B is induced in the striatum by cocaine. J. Neurosci. 13:423–433.PubMedGoogle Scholar
  13. 13.
    Liu, J., Nickolenko, J., and Sharp, F. R. 1994. Morphine induces c-fos andjunB in striatum and nucleus accumbens via D1 and N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA. 91: 8537–8541.PubMedCrossRefGoogle Scholar
  14. 14.
    Hope, B., Kosofsky, B., Hyman, S. E., and Nestler, E. J. 1992. Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc. Natl. Acad. Sci. USA. 89:5764–5768.PubMedCrossRefGoogle Scholar
  15. 15.
    Torres, G., and Rivier, C. 1992. Differential effects of intermittent or continuous exposure to cocaine on the hypothalamic-pituitaryadrenal axis and c-fos expression. Brain Res. 571:204–211.PubMedCrossRefGoogle Scholar
  16. 16.
    Norman, A. B., Lu, S. Y., Klug, J. M., and Norgren, R. B. 1993. Sensitization ofc-fos expression in rat striatum following multiple challenges with D-amphetamine. Brain Res. 603:125–128.PubMedCrossRefGoogle Scholar
  17. 17.
    Persico, A. M., Schindler, C. W., O'Hara, B. F., Brannock, M. T., and Uhl, G. R. 1993. Brain transcription factor expression: effects of acute and chronic amphetamine and injection stress. Mol. Brain Res. 20:91–100.PubMedCrossRefGoogle Scholar
  18. 18.
    Rosen, J. B., Chuang, E., and Iadarola, M. J. 1994. Differential induction of Fos protein and a Fos-related antigen following acute and repeated cocaine administration. Mol. Brain Res. 25:168–172.PubMedCrossRefGoogle Scholar
  19. 19.
    Paulson, P. E., Camp, D. M., and Robinson, T. E. 1991. Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacol. 103:480–492.CrossRefGoogle Scholar
  20. 20.
    Robinson, T. E., and Becker, J. B. 1986. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11:157–198.CrossRefGoogle Scholar
  21. 21.
    Kalivas, P. W., Striplin, C. D., Steketee, J. D., Klitenick, M. A., and Duffy, P. 1992. Cellular mechanisms of behavioral sensitization to drugs of abuse. Ann. N. Y. Acad. Sci. 654:128–135.PubMedCrossRefGoogle Scholar
  22. 22.
    Cador, M., Dumas, S., Cole, B. J., Mallet, J., Koob, G. F., Le Moal, M., and Stinus, L. 1992. Behavioral sensitization induced by psychomotor stimulatnts or stress: search for a molecular basis and evidence for a CRF-dependent phenomenon. Ann. N. Y. Acad. Sci. 654:416–420.PubMedCrossRefGoogle Scholar
  23. 23.
    Deroche, V., Marinelli, M., Maccari, S., Le Moal M., Simon, H., and Piazza, P. V. 1995. Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J. Neurosci. 15:7181–7188.PubMedGoogle Scholar
  24. 24.
    Robinson, T. E., Becker, J. B., and Presty, S. K. 1982. Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res. 253:231–241.PubMedCrossRefGoogle Scholar
  25. 25.
    Paxinos, G., and Watson, C. 1986. The Rat Brain in Stereotaxic Coordinates, Academic Press, Inc. Orlando.Google Scholar
  26. 26.
    Cullinan, W. E., Herman, J. P., Battaglia, D. F., Akil, H., and Watson, S. J. 1995. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience. 64:477–505.PubMedCrossRefGoogle Scholar
  27. 27.
    Sorg, B. A. 1992. Mesocorticolimbic dopamine systems: crosssensitization between stress and cocaine. Ann. N. Y. Acad. Sci. 654:136–144.PubMedCrossRefGoogle Scholar
  28. 28.
    Chapin, J. K., and Lin, C.-S. 1990. The somatic sensory cortex of the rat. pp 341–380,in Kolb, B. and Tees, R. C. (eds), The Cerebral Cortex of the Rat, The MIT Press, Cambridge, MA.Google Scholar
  29. 29.
    Clark, D., and White, F. J. 1987. Review: D1 dopamine receptor-the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapse. 1:347–388.PubMedCrossRefGoogle Scholar
  30. 30.
    Young, S. T., Porrino, L. J., and Iadarola, M. J. 1991. Cocaine induces striatal c-Fos-immunoreactivity proteins via dopaminergic D1 receptors. Proc. Natl. Acad. Sci. USA 88:1291–1295.PubMedCrossRefGoogle Scholar
  31. 31.
    Nestler, E. J., Terwilliger, R. Z., Walker, J. R., Sevarino, K. A. and Duman, R. S. 1990. Chronic cocaine treatment decreases levels of the G-protein subunits Gi and Go in discrete regions of rat brain. J. Neurochem. 55:1079–1082.PubMedCrossRefGoogle Scholar
  32. 32.
    Nestler, E. J. 1993. Cellular responses to chronic treatment with drugs of abuse. Critical Reviews in Neurobiology. 7:23–39.PubMedGoogle Scholar
  33. 33.
    Terwilliger, R. Z., Beitner-Johnson, D., Sevarino, K. A., Crain, S. M., and Nestler, E. J. 1991. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 548:100–110.PubMedCrossRefGoogle Scholar
  34. 34.
    Miserendino, M. J. D., and Nestler, E. J. 1995. Behavioral sensitization to cocaine: modulation by the cyclic AMP system in the nucleus accumbens. Brain Res. 674:299–306.PubMedCrossRefGoogle Scholar
  35. 35.
    Henry, D. J., and White, F. J. 1991. Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J. Pharmacol. Exp. Ther. 258:882–890.PubMedGoogle Scholar
  36. 36.
    Sheng, M., and Greenberg, M. E. 1990. The regulation and function ofc-fos and other immediate early genes in the nervous system. Neuron. 4:477–485.PubMedCrossRefGoogle Scholar
  37. 37.
    Schoffelmeer, A. N., Rice, K. C., Jacobson, A. E., Van Gelderen, J. G., Hogenboom, F., Heijna, M. H., and Mulder, A. H. 1988. Mu-, delta-, and kappa-opioid receptor-mediated inhibition of neurotransmitter release and adenylate cyclase activity in rat brain slices: studies with fentanyl isothiocyanate. Eur. J. Pharmacol. 154:169–178.PubMedCrossRefGoogle Scholar
  38. 38.
    Schoffelmeer, A. N., Rice, K. C., Heijna, M. H., Hogenboom, F., and Mulder, A. H. 1988. Fentanyl isothiocyanate reveals the existence of physically associated mu- and delta-opioid receptors mediating inhibition of adenylate cyclase in rat neostriatum. Eur. J. Pharmacol. 149:179–182.PubMedCrossRefGoogle Scholar
  39. 39.
    North, R. A., Williams, J. T., Suprenant, A., and Christie, M. J. 1987. Mu and delta receptors belong to a family of receptors that are couple to potassium channels. Proc. Natl. Acad. Sci. USA. 84:5487–5491.PubMedCrossRefGoogle Scholar
  40. 40.
    Fuxe, K., Agnati, L. F., Rosen, L., Bjelke, B., Cintra, A., Bortolotti, F., Tinner, B., Andersson, C., Hasselroth, U., Steinbusch, H., Gustafsson, J.-A., and Benfenati, F. 1991. Computer-assisted image analysis techniques allow a characterization of the compartments within the basal ganglia. Focus on functional compartments produced byd-amphetamine activation of the c-fos gene and its relationship to the glucocorticoid receptor. J. Chem. Neuroanat. 4: 355–372.PubMedCrossRefGoogle Scholar
  41. 41.
    Berretta, S., Robertson, H. A., and Graybiel, A. M. 1992. Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum. Neurophysiol. 67:767–777.Google Scholar
  42. 42.
    Torres, G., and Rivier, C. 1993. Cocaine-induced expression of striatalc-fos in the rat is inhibited by NMDA receptor antagonists. Brain Res. Bull. 30:173–176.PubMedCrossRefGoogle Scholar
  43. 43.
    Snyder-Keller, A. M. 1991. Striatal c-fos induction by drugs and stress in neonatally dopamine-depleted rats given nigral transplants: importance of NMDA activation and relevance to sensitization phenomenon. Exp. Neurol. 113:155–165.PubMedCrossRefGoogle Scholar
  44. 44.
    Beitner-Johnson, D., Guitart, X., and Nestler, E. J. 1992. Common intracellular actions of chronic morphine and cocaine in dopaminergic brain reward regions. Ann. N. Y. Acad. Sci. 654:70–87.PubMedCrossRefGoogle Scholar
  45. 45.
    Graybiel, A. M. 1993. Acute effects of psychomotor stimulant drugs on gene expression in the striatum. NIDA Res. Monogr. 125:72–81.PubMedGoogle Scholar
  46. 46.
    Robinson, T. E., and Berridge, K. C. 1993. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Reviews. 18:247–91.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Eileen J. Curran
    • 1
  • Huda Akit
    • 1
  • Stanley J. Watson
    • 1
  1. 1.Mental Health Research InstituteThe University of MichiganAnn Arbor

Personalised recommendations