Neurochemical Research

, Volume 21, Issue 11, pp 1333–1345 | Cite as

Laminar distribution of the multiple opioid receptors in the human cerebral cortex

  • Jacob M. Hiller
  • Li-Qun Fan
Anatomy of Opioid Receptors


Quantitative autoradiographic assessment of cerebral cortical laminar distribution of μ, δ and κ opioid receptors was carried out in coronal sections of five post-mortem human brains obtained at autopsy. The cortical areas studied were: cingulate, frontal, insular, parietal, parahippocampal, temporal, occipitotemporal, occipital and striate area. In general, the laminar patterns of distribution for the three types of receptors are distinctive. Peak levels of δ opioid binding are in laminae I, II, and IIa. μ-Receptors are located in lamina III followed by I and II in cingulate, frontal, insular and parietal cortices and lamina IV in temporal and occiptotemporal cortices. κ-Receptors are found concentrated in laminae V and VI. The patterns of opioid binding in cortical laminae showed remarkable consistency in all five brains examined. In contrast to other cortical areas, the parahippocampal gyrus, at the level of the amygdaloid formation, demonstrated peak κ receptor density in laminae I, II and III. μ-Opioid binding was undetectable in the lateral occipital cortex and in the striate area.

Key Words

Human brain cerebral cortex mu, delta, and kappa opioid receptors cortical laminae receptor binding autoradiography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mendelsohn, F. A. O., and Paxinos, G. 1991. Preface. Pages XIII-XIVin Mendelsohn, F. A. O., and Paxinos, G. (Eds.) Receptors in the Human Nervous System, Academic Press, Inc., San Diego, CA.Google Scholar
  2. 2.
    Wang, J. B., Johnson, P. S., Persico, A. M., Hawkins, A. L., Griffen, C. A., and Uhl, G. R. 1994. Human μ opiate receptor. cDNA and genomic clones pharmacologic characterization and chromosomal assignment. FEBS Lett. 338:217–222.PubMedCrossRefGoogle Scholar
  3. 3.
    Raynor, K., Kong, H., Mestek, A., Bye, L. S., Tian, M., Liu, J., Yu, L., and Reisine, T. 1995. Characterization of the cloned humanmu opioid receptor. J. Pharm. Exp. Therap., 272:423–428.Google Scholar
  4. 4.
    Mestek, A., Hurley, J. H., Bye, L. S., Campbell, A. D., Chen, Y., Tian, M., Liu, J., Schulman, H., and Yu, L. 1995. The human μ opioid receptor: modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C., J. Neuroscience. 15:2326–2406.Google Scholar
  5. 5.
    Knapp, R. J., Malatynska, E., Fang, L., Li, X., Babin, E., Nguyen, M., Santoro, G., Varga, E. V., Hruby, V. J., Roeske, W. R., and Yamamura, H. I. 1994. Identification of a human opioid delta receptor: Cloning and expression. Pharmacol. Lett. 54:463–469.Google Scholar
  6. 6.
    Simonin, F., Befort, K., Gaveriaux-Ruff, C., Matthes, H., Nappey, V., Lannes, B., Micheletti, G., and Kieffer, B. 1994. The human δ-opioid receptor: Genomic organization, cDNA cloning, functional expression, and distribution in human brain, Mol. Pharmacol. 46:1015–1021.PubMedGoogle Scholar
  7. 7.
    Wang, J. B., Johnson, P. S., Wu, J. M., Wang, W. F., and Uhl, G. R. 1994. Human κ opiate receptor second extracellular loop elevates dynorphin's affinity for μ/κ chimeras, J. Biol. Chem. 269: 25966–25969.PubMedGoogle Scholar
  8. 8.
    Anton, B., Husain, M., Kaufman, D., Stickney, E., Keith, D. Jr., Evans, C. J., and Miotto, K. 1994. Localization of mu, delta and kappa opioid receptor mRNAs in human brain. Regul. Pept. 54: 11–12.CrossRefGoogle Scholar
  9. 9.
    Zhu, J., Chen, C., Xue, J-C., Kunapuli, S., DeRiel, J. K., and Liu-Chen, L-Y. 1995. Cloning of a human κ opioid receptor from the brain. Life Sci. 56: PL 201–207.CrossRefGoogle Scholar
  10. 10.
    Hiller, J. M., Pearson, J., and Simon, E. J. 1973. Distribution of stereospecific binding of the potent narcotic analgesic etorphine in the human brain: Predominance in the limbic system. Res. Commun Chem. Pathol. Pharmacol., 6:1052–1062.PubMedGoogle Scholar
  11. 11.
    Kuhar, M. J., Pert, C. B., and Snyder, S. H. 1973. Regional distribution of opiate receptor binding in monkey and human brain. Nature. 245:447–450.PubMedCrossRefGoogle Scholar
  12. 12.
    Simon, E. J., and Hiller, J. M. 1994. Opioid peptides and opioid receptors, Pages 321–339,in G. J. Siegel, B. W. Agranoff, R. W. Albers, P. B. Molinoff (eds.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 5th Ed. Raven Press, Ltd. New York.Google Scholar
  13. 13.
    Bonnet, K. A., Groth, J., Gioannini, T. L., Cortes, M., and Simon, E. J. 1981. Opiate receptor heterogeneity in human brain regions. Brain Res. 221:437–440.PubMedCrossRefGoogle Scholar
  14. 14.
    Itzhak, Y., Bonnet, K. A., Groth, J., Hiller, J. M., and Simon, E. J. 1982. Multiple opiate binding sites in human brain regions: Evidence for κ and σ sites. Life Sci. 31:1363–1366.PubMedCrossRefGoogle Scholar
  15. 15.
    Pfeiffer, A., Pasi, A., Mehraein, P., and Herz, A. 1982. Opiate binding sites in human brain. Brain Res. 248:87–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Zagon, I. S., Gibo, D. M., and McLaughlin, P. J. 1990. Adult and developing cerebella exhibit different profiles of opioid binding sites. Brain Res. 523:62–68.PubMedCrossRefGoogle Scholar
  17. 17.
    Maurer, R., Cortés, R., Probst, A., and Palacios, J. M. 1983. Multiple opiate receptors in human brain: An autoradiographic investigation. Life Sci. 33 Suppl 1:231–234.PubMedCrossRefGoogle Scholar
  18. 18.
    Cross, A. J., Hille, C., and Slater, P. 1987. Subtraction autoradiography of opiate receptor subtypes in human brain. Brain Res. 418:343–348.PubMedCrossRefGoogle Scholar
  19. 19.
    Quirion, R., Pilapil, C., and Magnan, J. 1987. Localization of kappa opiopid receptor binding sites in human forebrain using [3H]U69,593: Comparison with [3H]bremazocine. Cellular Molec. Neurobiol. 7:303–307.CrossRefGoogle Scholar
  20. 20.
    Pilapil, C., Welner, S., Magnan, J., Gauthier, S., and Quirion, R. 1987. Autoradiographic distribution of multiple classes of opioid receptor binding sites in human forebrain. Brain Res. Bull. 19: 611–615.PubMedCrossRefGoogle Scholar
  21. 21.
    Blackburn, T. P., Cross, A. J., Hille, C., and Slater, P. 1988. Autoradiographic localization of delta opiate receptors in rat and human brain. Neuroscience, 27:497–506.PubMedCrossRefGoogle Scholar
  22. 22.
    Vogt, B. A., Plager, M. D., Crino, P. B., and Bird, E. D. 1990. Laminar distributions of muscarinic, acetylcholine, serotonin, GABA, and opioid receptors in human posterior cingulate cortex. Neuroscience. 36:165–174.PubMedCrossRefGoogle Scholar
  23. 23.
    Jansen, K. L. R., Faull, R. L. M., Dragunow, M., and Leslie, R. A. 1991. Distribution of excitatory and inhibitory amino acid, sigma, monamine, catecholamine, actylcholine, opioid, neurotensin, substance P, adenosine and neuropeptide Y receptors in human motor and somatosensory cortex. Brain Res. 566:225–238.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang, H., Sarrieau, A., Pélaprat, D., Roques, B. P., Vanhove, A., Kopp, N., Chi, Z.-Q., and Rostene, W. 1991. Characterization and distribution of [3H]ohmefentanyl binding sites in the human brain. Synapse. 8:177–184.PubMedCrossRefGoogle Scholar
  25. 25.
    Hiller, J. M., Yitzhak, Y., and Simon, E. J. 1987. Selective changes in μ, δ and κ opioid receptor binding in certain limbic regions of the brain in Alzheimer's disease patients. Brain Res. 406:17–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Jansen, K. L. R., Faull, R. L. M., Dragunow, M., and Synek, B. L. 1990. Alzheimer's disease: Changes in hippocampal N-methyl-d-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors—an autoradiographic study. Neuroscience 39:613–627.PubMedCrossRefGoogle Scholar
  27. 27.
    Mackay, K. B., Dewar, D., and McCulloch, J. 1994. Kappa-1 opioid receptors of the temporal cortex are preserved in Alzheimer's disease. J. Neural Transm. [P-D Sect], 7:73–79.CrossRefGoogle Scholar
  28. 28.
    Ikeda, M., Mackay, K. B., Dewar, D., and McCulloch, J. 1993. Differential alterations in adenosine A1 and κ1 opioid receptors in the striatum in Alzheimer's disease. Brain Res. 616:213–217.CrossRefGoogle Scholar
  29. 29.
    Barg, J., Belcheva, M., Rowinski, J., Ho, A., Burke, W. J., Chung, H. D., Schmidt, C. A., and Coscia, C. J. 1993. Opioid receptor changes in Alzheimer amygdala and putamen. Brain Res. 623: 209–215.CrossRefGoogle Scholar
  30. 30.
    Reisine, T. D., Rossor, M., Spokes, E., Iversen, L. I., and Yamamura, H. I. 1979. Alterations in brain opiate receptors in Parkinson's disease. Brain Res., 173:378–382.PubMedCrossRefGoogle Scholar
  31. 31.
    Delay-Goyet, P., Zajac, J.-M., Javoy-Agid, F., Agid, Y., and Roques, B. P. 1987. Regional distribution of μ, δ and κ opioid receptors in human brains from control and parkinsonian subjects, Brain Res. 414:8–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Gabilondo, A. M., Meana, J. J., and Garcia-Sevilla, J. A. 1995. Increased density of μ-opioid receptors in the postmortem brain of suicide victims. Brain Res. 682:245–250.PubMedCrossRefGoogle Scholar
  33. 33.
    Gross-Iseroff, R., Dillon, K. A., Israeli, M., and Biegon, A. 1990. Regionally selective increases in μ opioid receptor density in the brains of suicide victims. Brain Res. 530:312–316.CrossRefGoogle Scholar
  34. 34.
    Rinne, J. O., Lönnberg, P., and Marajamäki, P. 1993. Human brain methionine- and leucine-enkephalins and their receptors during aging. Brain Res. 624:131–136.PubMedCrossRefGoogle Scholar
  35. 35.
    Royston, M. C., Slater, P., Simpson, M. D. C., and Deakin, J. F. W. 1991. Analysis of laminar distribution of kappa opiate receptors in human cortex: Comparison between schizophrenia and normal. J. Neurosci. Meth. 36:145–153.CrossRefGoogle Scholar
  36. 36.
    Herkenham, M., and Pert, C. B. 1982. Light microscopic localization of brain opiate receptors: a general autoradiographic method which preserves tissue quality. J. Neurosci., 2:1129–1149.PubMedGoogle Scholar
  37. 37.
    Young, W. S., and Kuhar, M. J. 1979. A new method for receptor autoradiography: [3H]-opioid receptors in rat brain. Brain Res. 170:255–270.CrossRefGoogle Scholar
  38. 38.
    Roberts, M., Hanaway, J., and Morest, D. K. 1987. Pages 1–137. Atlas of the Human Brain in Section, Second Edition. Lea and Febiger, Philadelphia.Google Scholar
  39. 39.
    Nieuwenhuys, R., Voogd, J., and van Huijzen, C. 1988. Pages 1–437. The Human Central Nervous System, Springer-verlag, Berlin.CrossRefGoogle Scholar
  40. 40.
    Brodmann, K. 1909. Beiträge zur Histologischen Lokalisation der Grosshirnrinde. VI Mitteilung: Die Cortexgliederung des Menschen. J. Psychol. Neurol., 10:231–246.Google Scholar
  41. 41.
    Zilles, K., Schleicher, A., Rath, M., and Bauer, A. 1988. Quantitative receptor autoradiography in the human brain. Methodical aspects. Histochemistry. 90:129–137.PubMedCrossRefGoogle Scholar
  42. 42.
    Simonin, F., Gaveriaux-Ruff, C., Befort, K., Matthes, H., Lannes, B., Micheletti, G., Mattei, M-G., Charron, G., Bloch, B., and Kieffer, B. 1995. κ-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system. Proc. Natl. Acad. Sci. USA 92:7006–7010.PubMedCrossRefGoogle Scholar
  43. 43.
    Wevers, A., Schmidt, P., Cserpan, E., Cserpan, I., Maderspach, K., Staak, M., and Schroeder, H. 1995. Cellular distribution of the mRNA for the κ-receptor in the human neocortex; a non-isotopic in situ hybridization study. Neurosci. Lett. 195:125–128.PubMedCrossRefGoogle Scholar
  44. 44.
    Schmidt, P., Schroeder, H., Maderspach, K., and Staak, M. 1994. Immunohistochemical localization of κ opioid receptors in the human frontal cortex. Brain Res. 654:223–233.PubMedCrossRefGoogle Scholar
  45. 45.
    Zilles, K. 1991. Codistribution of receptors in the human cerebral cortex. Pages 165– F. A. O. Mendelsohn and G. Paxinos (eds.), Receptors in the human nervous system. Academic Press, San Diego, CA.Google Scholar
  46. 46.
    Gross-Isseroff, R., Salama, D., Israeli, M., and Biegon, A. 1990. Autoradiographic analysis of age-dependent changes in serotonin 5HT2 receptors of the human brain postmortem. Brain Res. 519: 223–227.PubMedCrossRefGoogle Scholar
  47. 47.
    Kellar, K. J., Whitehouse, P. J., Martino-Barrows, A. M., Marcus, K., and Price, D. L. 1987. Muscarinic and nicotinic cholinergic binding sites in Alzheimer's disease cerebral cortex. Brain Res. 436:62–68.PubMedCrossRefGoogle Scholar
  48. 48.
    Pascual, J., del Arco, C., Gonzalez, A. M., Pazos, A., 1992. Quantitative light microscopic autoradiographic localization of α2-adrenoreceptors in the human brain. Brain Res. 585:116–127.PubMedCrossRefGoogle Scholar
  49. 49.
    Reubi, J. C., Cortes, R., Maurer, R., Probst, A., and Palacios, J. M. 1986. Distribution of somatostatin receptors in the human brain: an autoradiographic study. Neuroscience 18:329–346.PubMedCrossRefGoogle Scholar
  50. 50.
    Martinez-Mir, M. I., Pollard, H., Moreau, J., Arrang, J. M., Ruat, M., Traiffort, E., Schwartz, J. C., and Palacios, J. M. 1990. Three histamine receptors (H1, H2, H3) visualized in the brain of human and non-human primates. Brain Res. 526:322–327.PubMedCrossRefGoogle Scholar
  51. 51.
    Smiley, J. F., Levey, A. I., iliax, B. J., Goldman-Rakic, P. S., 1994. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: Predominant and extrasynaptic localization in dendritic spines. Proc. Natl. Acad. Sci. USA 91:5720–5724.PubMedCrossRefGoogle Scholar
  52. 52.
    Chalmers, D. T., Dewar, D., Graham, D. I., Brooks, D. N., and McCulloch, J. 1990. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type. Proc. Natl. Acad. Sci. USA 87:1352–1356.PubMedCrossRefGoogle Scholar
  53. 53.
    Bockers, T. M., Zimmer, M., Muller, A., Bergmann, M., Brose, N., and Kreutz, M. R. 1994. Expression of NMDA R1 receptor in selected human brain regions. 1994. NeuroReport 5:965–969.PubMedCrossRefGoogle Scholar
  54. 54.
    Illes, P. 1989. Modulation of transmitter and hormone release by multiple neuronal opioid receptors. Rev. Physiol. Biochem. Pharmacol. 112:139–233.PubMedCrossRefGoogle Scholar
  55. 55.
    Jhamandas, K., and Sutak, M. 1980. Action of enkephalin analogues and morphine on acetylcholine release: differential reversal by naloxone and an opiate pentapeptide. Br. J. Pharmacol. 71: 201–210.PubMedGoogle Scholar
  56. 56.
    Ennis, C., and Wyllie, M. G. 1984. Evidence for functionally distinct μ receptors modulating acetylcholine release. Neuropeptides 5:109–112.PubMedCrossRefGoogle Scholar
  57. 57.
    Izquierdo, I., 1990. Acetylcholine release is modulated by different opioid receptor types in different brain regions and species. Trends in Pharm. Sci. 11:183–184.CrossRefGoogle Scholar
  58. 58.
    Heijna, M. H., Padt, M., Hogenboom, F., Portoghese, P. S., Mulder, A. H., and Schoffelmeer, A. N. M. 1990. Opioid receptor mediated inhibition of dopamine and acetylcholine release from slices of rat nucleus accumbens, olfactory tubercle and frontal cortex. Eur. J. Pharmacol. 18:267–278.CrossRefGoogle Scholar
  59. 59.
    Hagan, R. M., and Hughes, I. E. 1984. Opioid receptor sub-types involved in the control of transmitter release in cortex of the brain of the rat. Neuropharmacology 23:491–495.PubMedCrossRefGoogle Scholar
  60. 60.
    Werling, L. L., Brown, S. R., and Cox, B. M. 1987. Opioid receptor regulation of the release of norepinephrine in brain. Neuropharmacology 26:987–996.PubMedCrossRefGoogle Scholar
  61. 61.
    Mulder, A. H., Hogenboom, F., Wardeh, G., and Schoffelmeer, A. N. M. 1987. Morphine and enkephalins potently inhibit [3H]noradrenaline release from rat brain cortex synaptosomes: further evidence for a presynaptic localization of μ-opioid receptors. J. Neurochem. 48:1043–1047.PubMedCrossRefGoogle Scholar
  62. 62.
    Bradford, H. F., Crowder, J. M., and White, E. J. 1986. Inhibitory actions of opioid compounds on calcium fluxes and neurotransmitter release from mammalian cerebral cortical slices. Br. J. Pharmacol. 88:87–93.PubMedCrossRefGoogle Scholar
  63. 63.
    Werz, M., and Macdonald, R. 1982. Opioid peptides decrease calcium-dependent action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res. 239:315–321.PubMedCrossRefGoogle Scholar
  64. 64.
    North, R. A., Williams, J. T., Surprenant, A., and Christie, M. J. 1987. μ and δ receptors belong to a family of receptors that are coupled to potassium channels. Proc. Natl. Acad. Sci. USA. 84: 5487–5491.PubMedCrossRefGoogle Scholar
  65. 65.
    Chavkin, C. 1988. Electrophysiology of opiates and opioid peptides. Pages 273–303,in G. W. Pasternak (ed.) The Opiate Receptors. Humana, Clifton, NJ.Google Scholar
  66. 66.
    North, R. A. 1993. Opioid actions on membrane ion channels. Pages 773–797,in A. Herz (ed.) Handbook of Experimental Pharmacology: Opioids I. Vol. 104. Springer, Berlin.Google Scholar
  67. 67.
    Schroeder, J. E., and McCleskey, E. W. 1993. Inhibition of Ca++ currents by a mu-opioid in a defined subset of rat sensory neurons. J. Neurosci. 13:867–873.PubMedGoogle Scholar
  68. 68.
    Xie, G-x., Meng, F., Mansour, A., Thompson, R. C., Hoversten, M. T., Goldstein, A., Watson, S. J., and Akil, H. 1994. Primary structure and functional expression of a guinea pig κ opioid (dynorphin) receptor. Proc. Natl. Acad. Sci. USA. 91:3779–3783.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Jacob M. Hiller
    • 1
  • Li-Qun Fan
    • 1
  1. 1.Department of PsychiatryNew York University Medical CenterNY

Personalised recommendations