Neurochemical Research

, Volume 21, Issue 7, pp 755–761

Molecules inhibiting neurite growth: A minireview

  • Martin E. Schwab
Original Articles


Molecules and activities which repulse growing neurites or induce growth cone collapse and long-lasting growth inhibition have been defined over the last 10 years. Recently, specific guidance roles for developing axons and pathways could be associated with such repulsive effects. A high molecular weight membrane protein located in CNS myelin acts as potent neurite growth inhibitor and may play a role as a negative control element for sprouting, neurite growth and regeneration, and for the plasticity of the adult CNS. Interestingly, some guidance molecules can have positive, growth-promoting as well as negative, repulsive effects for specific types of neurons. These results underline the complex mechanisms involved in neurite guidance which depends on the interpretation of combinations of incoming signals by particular growth cones.

Key Words

Guidance development growth cone regeneration plasticity glia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thoenen, H. and Barde, Y.-A. 1980. Physiology of nerve growth factor. Physiol. Reviews 60:1284–1335Google Scholar
  2. 2.
    Teng, K. K., and Greene, L. A. 1994 KT5926 selectively inhibits nerve growth factor-dependent neurite elongation. J. Neurosci. 14: 2624–2635.PubMedGoogle Scholar
  3. 3.
    Twiss, J. L., and Shooter, E. M. 1995. Nerve growth factor promotes neurite regeneration in PC12 cells by translational control. J. Neurochem. 64:550–557.PubMedCrossRefGoogle Scholar
  4. 4.
    Gundersen, R. W., and Barrett, J. N. 1980. Characterization of the turning response of dorsal roots neurites toward nerve growth factor. J. Cell Biol. 87:546–554.PubMedCrossRefGoogle Scholar
  5. 5.
    Sanes, J. R. 1989. Extracellular matrix molecules that influence neural development. Ann. Rev. Neurosci. 12: 491–516.PubMedCrossRefGoogle Scholar
  6. 6.
    Reichardt, L. F., and Tomaselli, K. J. 1991. Extracellular matrix molecules and their receptors. Ann. Rev. Neurosci. 14:531–570.PubMedCrossRefGoogle Scholar
  7. 7.
    Schachner, M. 1994. Neural recognition molecules in disease and regeneration. Curr. Opin Neurobiol. 4:726–734.PubMedCrossRefGoogle Scholar
  8. 8.
    Schwab, m. E., Kapfhammer, J. P., and Bandtlow, C. E. 1993. Inhibitors of neurite growth. In Annual Review of Neuroscience. W. M. Cowan, editor. Annual Rev. Inc., Palo Alto., Vol. 16, 565–595.Google Scholar
  9. 9.
    Schuch, U., Lohse, M. J., and Schachner, M. 1989. Neural cell adhesion molecules influence second messenger systems. Neuron 3:13–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Doherty, P., and Walsh, F. S. 1992. Cell adhesion molecules, second messengers and axonal growth. Curr. Opin. Neurobiol. 2:595–601.PubMedCrossRefGoogle Scholar
  11. 11.
    Goodman, C. S. 1994. The likeness of being: phylogenetically conserved molecular mechanisms of growth cone guidance. Cell 78:353–356.PubMedCrossRefGoogle Scholar
  12. 12.
    Stern, C. D., Sisodiya, S. M., and Keynes, R. J. 1986. Interactions between neurites and somite cells: inhibition and stimulation of nerve growth in the chick embryo. J. Embriol. Exp. Morphol. 91: 209–226.Google Scholar
  13. 13.
    Tosney, K. W., and Oakley, R. A. 1990. The perinotochordal mesenchyme acts as a barrier to axon advance in the chick embryo: Implications for a general mechanism of axon guidance. Exp. Neurol 109:75–89.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwab, M. E., and Thocnen, H. 1985. Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J. Neurosci. 5:2415–2423.PubMedGoogle Scholar
  15. 15.
    Kapfhammer, J. P., Grunewald, B. E., and Raper, J. A. 1986. The selective inhibition of growth cone extension by specific neurites in culture. J. Neurosci. 6:2527–2534.PubMedGoogle Scholar
  16. 16.
    Walter, J., Henke-Fahle, S., and Bonhoeffer, F. 1987. Avoidance of posterior tectal membranes by temporal retinal axons. Devl. 101:909–913.Google Scholar
  17. 17.
    Caroni, P., and Schwab, M. E. 1988. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106:1281–1288.PubMedCrossRefGoogle Scholar
  18. 18.
    Caroni, P., and Schwab, M. E. 1988. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1:85–96.PubMedCrossRefGoogle Scholar
  19. 19.
    Stahl, B., Müller, B., van Boxberg, Y., Cox, E. C., and Bonhoeffer, F. 1990. Biochemical characterization of a putative axonal guidance molecule of the chick visual system. Neuron 5:735–743.PubMedCrossRefGoogle Scholar
  20. 20.
    Davies, J. A., Cook, G. M. W., Stern, C. D., and Keynes, R. J. 1990. Isolation from chick somites of a glycoprotein fraction that causes collapse of dorsal root ganglion growth cones. Neuron 2: 11–20.CrossRefGoogle Scholar
  21. 21.
    Raper, J. A., and Kapfhammer, J. P. 1990. The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron 2:21–29.CrossRefGoogle Scholar
  22. 22.
    Kater, S. B., and Mills, L. R. 1991. Regulation of growth cone behavior by calcium. J. Neurosci. 11:891–899.PubMedGoogle Scholar
  23. 23.
    Snow, D. M., Lemmon, V., Carrino, D. A., Caplan, A. I., and Silver, J. 1990. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp. Neurol. 109:111–130.PubMedCrossRefGoogle Scholar
  24. 24.
    Oohira, A., Matsui, F., and Katho-Semba, R. 1991. Inhibitory effects of brain chondroitin sulfate proteoglycans on neurite out-growth from PC12D cells. J. Neurosci. 11:822–827.PubMedGoogle Scholar
  25. 25.
    Snow, D. M., and Letourneau, P. C. 1992. Neurite outgrowth on a step gradient of chondroitin sulfate proteoglycan (CS-PG). J. Neurobiol. 23: 322–336.PubMedCrossRefGoogle Scholar
  26. 26.
    Schwab, M. E., and Bartholdi, D. 1996. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76:319–370.PubMedGoogle Scholar
  27. 27.
    Luo, Y., and Raper, J. A. 1994. Inhibitory factors controlling growth cone motility and guidance. Curr. Opin. Neurobiol. 4:648–654.PubMedCrossRefGoogle Scholar
  28. 28.
    Luo, Y., Raible, D., and Raper, J. A. 1993. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75:217–227.PubMedCrossRefGoogle Scholar
  29. 29.
    Kolodkin, A. L., Matthes, D. J., and Goodman, C. S. 1993. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75:1389–1399.PubMedCrossRefGoogle Scholar
  30. 30.
    Püschel, A. W., Adams, R. H., and Betz, H. 1995. Murine semaphorin D/collapsin is amembre of a diverse gene family and creates domains inhibitory for axonal extension. Neuron 14:941–948.PubMedCrossRefGoogle Scholar
  31. 31.
    Luo, Y., Sheperd, I., Li, J., Renzi, M. J., Chang, S., and Raper, J. A. 1995. A family of molecules related to collapsin in the embryonic chick nervous system. Neuron 14:1131–1140.PubMedCrossRefGoogle Scholar
  32. 32.
    Messersmith, E. K., Leonardo, E. D., Shatz, C. J., Tessier-Lavigne, M., Goodman, C. S., and Kolodkin, A. L. 1995. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14:949–959.PubMedCrossRefGoogle Scholar
  33. 33.
    Kolodkin, A. L., Matthes, D. J., O'Connor, T. P., Patel, N. H., Admon, A., Bentley, D., and Goodman, C. S. 1992 Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron 9:831–845.PubMedCrossRefGoogle Scholar
  34. 34.
    Fan, J., and Raper, J. A. 1995. Localized collapsing cues can steer growth cones without inducing their full collapse. Neuron 14:263–274.PubMedCrossRefGoogle Scholar
  35. 35.
    Fan, J., Mansfield, S. G., Redmond, T., Gordon-Weeks, P. R., and Raper, J. A. 1993. The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J. Cell Biol. 121:867–878.PubMedCrossRefGoogle Scholar
  36. 36.
    Matthes, D. J., Sink, H., Kolodkin, A. L., and Goodman, C. S. 1995. Semaphorin II can function as a selective inhibitor of specific synaptic arborizations. Cell 81:631–639.PubMedCrossRefGoogle Scholar
  37. 37.
    Drescher, U., Kremoser, C., Handwerker, C., Köschinger, J., Noda, M., and Bonhoeffer, F. 1995. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDA tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82:359–370.PubMedCrossRefGoogle Scholar
  38. 38.
    Cheng, H.-J., Nakamoto, M., Bergemann, A. D., and Flanagan, J. G. 1995. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82:371–381.PubMedCrossRefGoogle Scholar
  39. 39.
    Clarke, G. A., and Moss, D. J. 1994. Identification of a novel protein from adult chicken brain that inhibits neurite outgrowth. J. Cell Sci. 107:3393–3402.PubMedGoogle Scholar
  40. 40.
    Schnell, L., and Schwab, M. E. 1990. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343:269–272.PubMedCrossRefGoogle Scholar
  41. 41.
    Bandtlow, C. E., Zachleder, T., and Schwab, M. E. 1990. Oligo-dendrocytes arrest neurite growth by contact inhibition. J. Neurosci. 10:3837–3848.PubMedGoogle Scholar
  42. 42.
    Bandtlow, C. E., Schmidt, M. F., Hassinger, T. D., Schwab, M. E., and Kater, S. B. 1993. Role of intracellular calcium in NI-35-evoked collapse of neuronal growth cones. Science 259:80–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Igarashi, M., Strittmatter, S. M., Vartanian, T., and Fishman, M. C. 1993. Mediation by G proteins of signals that cause collapse of growth cones. Science 259:77–79.PubMedCrossRefGoogle Scholar
  44. 44.
    Rubin, B. P., Dusart, I., and Schwab, M. E. 1994. A monoclonal antibody (IN-1) which neutralizes neurite growth inhibitory proteins in the rat CNS recognizes antigens localized in CNS myelin. J. Neurocytol. 23:209–217.PubMedCrossRefGoogle Scholar
  45. 45.
    Schwab, M. E., and Schnell, L. 1991. Channelling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors. J. Neurosci. 11:709–722.PubMedGoogle Scholar
  46. 46.
    Kapfhammer, J., Schwab, M. E., and Schneider, J. 1992. Antibody neutralization of neurite growth inhibitors from oligodendrocytes results in expanded pattern of postnatally sprouting retinocollicular axons. J. Neurosci. 12:2112–2119.PubMedGoogle Scholar
  47. 47.
    Colello, R. J., and Schwab, M. E. 1994. A role for oligodendrocytes in the stabilization of optic axon numbers. J. Neurosci. 14: 6446–6452.PubMedGoogle Scholar
  48. 48.
    Kapfhammer, J. P., and Schwab, M. E. 1994. Inverse pattern of myelination and GAP-43 expression in the adult CNS: neurite growth inhibitors as regulators of neuronal plasticity? J. Comp. Neurol. 340:194–206.PubMedCrossRefGoogle Scholar
  49. 49.
    Kapfhammer, J. P., and Schwab, M. E. 1994. Increased expression of the growth-associated protein GAP-43 in the myelin-free rat spinal cord. Eur. J. Neurosci. 6:403–411.PubMedCrossRefGoogle Scholar
  50. 50.
    Schwegler, G., Schwab, M. E., and Kapfhammer, J. P. 1995. Increased collateral sprouting of primary afferents in the myelin-free spinal cord. J. Neurosci. 15:2756–2767.PubMedGoogle Scholar
  51. 51.
    Savio, T., and Schwab, M. E. 1990. Lesioned corticospinal tract axons regenerate in myelin-free rat spinal cord. Proc. Natl. Acad. Sci. USA 87:4130–4133.PubMedCrossRefGoogle Scholar
  52. 52.
    Weibel, D., Cadelli, D., and Schwab, M. E. 1994. Regeneration of lesioned rat optic nerve fibers is improved after neutralization of myelin-associated neurite growth inhibitors. Brain Res. 642: 259–266.PubMedCrossRefGoogle Scholar
  53. 53.
    Cadelli, D., and Schwab, M. E. 1991. Regeneration of lesioned septohippocampal acetylcholinesterase-positive axons is improved by antibodies against the myelin-associated neurite growth inhibitors NI-35/250. Europ. J. Neurosci. 3:825–832.CrossRefGoogle Scholar
  54. 54.
    Schnell, L., and Schwab, M. E. 1993. Sprouting and regeneration of lesioned corticospinal tract fibers in the adult rat spinal cord. Europ. J. Neurosci. 5:1156–1171.CrossRefGoogle Scholar
  55. 55.
    Schnell, L., Schneider, R., Kolbeck, R., Barde, Y.-A., and Schwab, M. E. 1994. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173.PubMedCrossRefGoogle Scholar
  56. 56.
    Bregman, B. S., Kunkel-Bagden, E., Schnell, L., Dai, H. N., Gao, D., and Schwab, M. E., 1995. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378: 498–501.PubMedCrossRefGoogle Scholar
  57. 57.
    Serafini-Kennedy, T. E., Galko, M. J., Mirzayan, C., Jessel, T. M., and Tessier-Lavigne, M. 1994. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78:409–424.CrossRefGoogle Scholar
  58. 58.
    Ishii, N., Wadsworth, W. G., Stern, B. D., Culotti, J. G., and Hedgecock, E. M. 1992. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9:873–881.PubMedCrossRefGoogle Scholar
  59. 59.
    Kennedy, T. E., Serafini, T., de la Torre, J. R., and Tessier-Lavigne, M. 1994. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78:425–435.PubMedCrossRefGoogle Scholar
  60. 60.
    Tamada, A., Shirasaki, R., and Murakami, F. 1995. Floor plate chemoattracts crossed axons and chemorepels uncrossed axons in the vertebrate brain. Neuron 14:1083–1093.PubMedCrossRefGoogle Scholar
  61. 61.
    Shirasaki, R., Tamada, A., Katsumata, R., and Murakami, F. 1995. Guidance of cerebellofucal axons in the rat embryo: directed growth toward the floor plate and subsequent elongation along the longitudinal axis. Neuron 14:961–972.PubMedCrossRefGoogle Scholar
  62. 62.
    Colamarino, S. A., and Tessier-Lavigne, M. 1995. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear moto axons. Cell 81:621–629.PubMedCrossRefGoogle Scholar
  63. 63.
    Guthrie, S., and Pini, A. 1995. Chemorepulsion of developing motor axons by the floor plate. Neuron 14:1117–1130.PubMedCrossRefGoogle Scholar
  64. 64.
    Nose, A., Mahajan, V. B., and Goodman, C. S. 1992. Connectin: A homophilic cell adhesion molecule expressed on a subset of muscles and the motoneurons that innervate them in Drosophila. Cell 70:553–567.PubMedCrossRefGoogle Scholar
  65. 65.
    Nose, A., Takeichi, M., and Goodman, C. S. 1994. Ectopic expression of connectin reveals a repulsive function during growth cone guidance and synapse formation. Neuron 13:525–539.PubMedCrossRefGoogle Scholar
  66. 66.
    McKerracher, L., David, S., Jackson, D. L., Kottis, V., Dunn, R. J., and Braun, P. E. 1994. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805–811.PubMedCrossRefGoogle Scholar
  67. 67.
    Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R., and Filbin, M. Y. 1994. A novel role of myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:1–20.CrossRefGoogle Scholar
  68. 68.
    Bartsch, U. Bandtlow, C. E., Schnell, L., Bartsch, S., Spillmann, A. A., Rubin, B. P., Montag, D., Schwab, M. E., and Schachner, M. 1995. Lack of evidence that the myelin-associated glycoprotein (MAG) is a major inhibitor of axonal regeneration in the CNS. Neuron 15:1376–1381.CrossRefGoogle Scholar
  69. 69.
    Martini, R., Schachner, M., and Faissner, A. 1990. Enhanced expression of the extracellular matrix molecule J1/tenascin in the regenerating adult mouse sciatic nerve. J. Neurocytol. 19:601–616.PubMedCrossRefGoogle Scholar
  70. 70.
    Bartsch, U., Bartsch, S., Dörries, U., and Schachner, M. 1992. Immunohistological localization of tenascin in the developing and lesioned adult mouse optic nerve. Europ. J. Neurosci. 4:338–352.CrossRefGoogle Scholar
  71. 71.
    Bartsch, S., Husmann, K., Schachner, M., and Bartsch, U. 1995. The extracellular matrix molecule tenascin: expression in the developing chick retinotectal system and substrate properties for retinal ganglion cell neurites in vitro. Europ. J. Neurosci. 7:907–916.CrossRefGoogle Scholar
  72. 72.
    Taylor, J., Pesheva, P., and Schachner, M. 1993. Influence of janusin and tenascin on growth cone behavior in vitro. J. Neurosci. Res. 35:347–362.PubMedCrossRefGoogle Scholar
  73. 73.
    Wehrle-Haller, B., and Chiquet, M. 1993. Dual function of tenascin: simultaneous promotion of neurite growth and inhibition of glial migration. J. Cell. Sci. 106:597–610.PubMedGoogle Scholar
  74. 74.
    Wehrle, B., and Chiquet, M. 1990. Tenascin is accumulated along developing peripheral nerves and allows neurite outgrowth in vitro. Development 110:401–415.PubMedGoogle Scholar
  75. 75.
    Martini, R., and Schachner, M. 1991. Complex expression pattern of tenascin during innervation of the posterior limb buds of the developing chicken. J. Neurosci. Res. 28:261–279.PubMedCrossRefGoogle Scholar
  76. 76.
    Laywell, E. D., Dörries, U., Bartsch, U., Faissner, A., Schachner M., and Steindler, D. A. 1992. Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury. Proc. Natl. Acad. Sci. USA 89:2634–2638.PubMedCrossRefGoogle Scholar
  77. 77.
    Saga, Y., Yagi, T., Ikawa, Y., Sakakura, T., and Aizawa, S. 1992. Mice develop normally without tenascin. Genes Dev. 6:1821–1831.PubMedGoogle Scholar
  78. 78.
    Pesheva, P., Spiess, E., and Schachner, M. 1989. J1–160 and J1–180 are oligodendrocyte-secreted nonpermissive substrates for cell adhesion. J. Cell Biol. 109:1765–1778.PubMedCrossRefGoogle Scholar
  79. 79.
    Rathjen, F. G., Wolff, J. M., and Chiquet-Ehrismann, R. 1991. Restrictin: a chick neural extracellular matrix protein involved in cell attachment co-purifies with the cell recognition molecule F11. Devl. 113:151–164.Google Scholar
  80. 80.
    Fuss, B., Wintergerst, E.-S., Bartsch, U., and Schachner, M. 1993. Molecular characterization and in situ mRNA localization of the neuronal recognition molecule J1–160/180: a modular structure similar to tenascin. J. Cell Biol. 120:1237–1249.PubMedCrossRefGoogle Scholar
  81. 81.
    Nörenberg, U., Hubert, M., Brümmendorf, T., Tarnok, A., and Rathjen, F. G. 1995. Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R. J. Cell Biol. 130:473–484.PubMedCrossRefGoogle Scholar
  82. 82.
    Wintergerst, E. S., Fuss, B., and Bartsch, U. 1993. Localization of Janusin mRNA in the central nervous system of the developing and adult mouse. Europ. J. Neurosci. 5:299–310.CrossRefGoogle Scholar
  83. 83.
    Lander, A. D. 1993. Proteoglycans in the nervous system Curr. Opin. Neurobiol. 3:716–723.PubMedCrossRefGoogle Scholar
  84. 84.
    Iijima, N., Oohira, A., Mori, T., Kitabatake, K., and Kohsaka, S. 1991. Core protein of chondroitin sulfate proteoglycan promotes neurite outgrowth from cultured neocortical neurons. J. Neurochem. 56:706–708.PubMedCrossRefGoogle Scholar
  85. 85.
    Boyolenta, P., Wandosell, F., and Nieto-Sampedro, M. 1993. Characterization of a neurite outgrowth inhibitor expressed after CNS injury. Europ. J. Neurosci. 5:454–465.CrossRefGoogle Scholar
  86. 86.
    Faissner, A., Clement, A., Lochter, A., Streit, A., Mandl, C., and Schachner, M. 1994. Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties. J. Cell Biol. 126:783–799.PubMedCrossRefGoogle Scholar
  87. 87.
    Katoh-Semba, R., Matsuda, M., Kato, K., and Oohira, A. 1995. Chondroitin sulphate proteoglycans in the rat brain: candidates for axon barriers of sensory neurons and the possible modification by laminin of their actions. Europ. J. Neurosci. 7:613–621.CrossRefGoogle Scholar
  88. 88.
    Geisert Jr., E. E., and Bidanset, D. J. 1993. A centrla nervous system keratan sulfate proteoglycan: localization to boundaries in the neonatal rat brain. Devl. Brain Res. 75:163–173.CrossRefGoogle Scholar
  89. 89.
    Levinc, J. M. 1994. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J. Neurosci 14:4716–4730.Google Scholar
  90. 90.
    Snow, D. M., Watanabe, M., Letourneau, P. C., and Silver, J. 1991. A chondroitin sulfate proteoglycan may influence the direction of retinal ganglion cell outgrowth. Devl. 113:1473–1485.Google Scholar
  91. 91.
    Kater, S. B., and Rehder, V. 1995. The sensory-motor role of growth cone filopodia. Curr. Opin. Neurobiol. 5:68–74.PubMedCrossRefGoogle Scholar
  92. 92.
    Hess, D. T., Patterson, S. I., Smith, D. S., and Skene, J. H. P. 1993. Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. Nature 366:562–565.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Martin E. Schwab
    • 1
  1. 1.Brain Research InstituteUniversity of ZurichZurichSwitzerland

Personalised recommendations