Remarks on finite invariant measures for one-parameter group of measurable transformations

  • Yoshihiro Kubokawa


Invariant Measure Measure Space Finite Measure Arbitrary Positive Number Measurable Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. R. Halmos,Lecture on Ergodic Theory, Math. Soc. Japan, 1956.Google Scholar
  2. [2]
    Y. N. Dowker, “Finite and σ-finite invariant measures,”Ann. Math., 54 (1951), 595–608.CrossRefMathSciNetGoogle Scholar
  3. [3]
    A. B. Hajian and S. Kakutani, “Weakly wandering sets and invariant measures,”Trans. Amer. Math. Soc., 110 (1964), 136–151.CrossRefMathSciNetGoogle Scholar
  4. [4]
    E. Hopf, “Theory of measure and invariant integrals,”Trans. Amer. Math. Soc., 34 (1932), 373–393.CrossRefMathSciNetGoogle Scholar
  5. [5]
    H. Hopf,Ergodentheorie, Springer, 1937.Google Scholar
  6. [6]
    E. Hille,Functional Analysis and Semi-groups, Amer. Math. Soc., 1948.Google Scholar

Copyright information

© The Institute of Statistical Mathematics 1969

Authors and Affiliations

  • Yoshihiro Kubokawa

There are no affiliations available

Personalised recommendations