Nonparametric estimation in Markov processes

  • George G. Roussas


Compact Subset Markov Process Asymptotic Normality Transition Density Joint Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Billingsley,Statistical Inference for Markov Processes, University of Chicago Press, 1961.Google Scholar
  2. [2]
    S. Bochner,Harmonic Analysis and the Theory of Probability, University of California Press, 1955.Google Scholar
  3. [3]
    Theo. Cacoullos, “Estimation of a multivariate density,”Ann. Inst. Statist. Math., 18 (1964), 179–189.MathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Cramér,Mathematical Methods of Statistics, Princeton University Press, 1946.Google Scholar
  5. [5]
    J. Doob,Stochastic Processes, Wiley, New York, 1953.zbMATHGoogle Scholar
  6. [6]
    U. Grenander, “Some direct estimates of the mode,”Ann. Math. Statist., 36 (1965), 131–138.MathSciNetzbMATHGoogle Scholar
  7. [7]
    L. LeCam, “Locally asymptotically normal families of distributions,”University of California Publications in Statistics, 3 (1960), 37–98.MathSciNetGoogle Scholar
  8. [8]
    M. Loève,Probability Theory, 3rd ed., Van Nostrand, N. J., 1963.zbMATHGoogle Scholar
  9. [9]
    E. Parzen, “On estimation of a probability density function and mode,”Ann. Math. Statist., 33 (1962), 1065–1076.MathSciNetzbMATHGoogle Scholar
  10. [10]
    M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,”Ann. Math. Statist., 27 (1956), 832–837.MathSciNetzbMATHGoogle Scholar
  11. [11]
    R. Roussas, “Asymptotic inference in Markov processes,”Ann. Math. Statist., 36 (1965), 978–992.MathSciNetGoogle Scholar
  12. [12]
    G. Roussas, “Extension to Markov Processes of a result by Wald about the consistency of the maximum likelihood estimate,”Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 4 (1965), 69–73.CrossRefMathSciNetzbMATHGoogle Scholar
  13. [13]
    G. S. Watson and M. R. Leadbetter, “On the estimation of the probability density, I,”Ann. Math. Statist., 34 (1963), 480–491.MathSciNetzbMATHGoogle Scholar
  14. [14]
    P. Whittle, “On the smoothing of probability density functions,”J. R. Statist. Soc., Ser. B, 20 (1958), 334–343.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics 1969

Authors and Affiliations

  • George G. Roussas
    • 1
  1. 1.University of WisconsinMadison

Personalised recommendations