, 3:5 | Cite as

Chloroplast pigments of the marine dinoflagellateGyrodinium resplendens

  • Alfred R. LoeblichIII
  • V. Elliott Smith


The photosynthetic marine dinoflagellate,Gyrodinium resplendens, was grown axenically and harvested during logarithmic growth for analysis of its lipid-soluble pigments. Chlorophylla and 8 carotenoids were isolated from the methanol and acetone extract by column and thin-layer chromatography. Chlorophyllc was isolated by partitioning the total extract between saline aqueous acetone and hexane.

Absorption spectra taken in hexane, ethanol, methanol and carbon disulfide confirm the presence of β-carotene, peridinin, dinoxanthin and diadinoxanthin as major carotenoids.

Four new minor xanthophylls are also described, one of which, namedpyrrhoxanthin, resembles an alkali-labile keto-epoxide. At least one of the minor xanthophylls occurs as an ester.

Diadinoxanthin fromGyrodinium and antheraxanthin fromEuglena gracilis seem to be identical with respect to absorption curves, polarity, number of 5, 6-epoxy groups and lack of allylic hydroxyl groups; however, co-chromatography of stereoisomers after iodine-isomerization showed slight differences.

Most of the carotenoids are further characterized here by their partition ratios between hexane and 95% methanol. Several of the carotenoids were tested for the presence of 5, 6-epoxy and allylic hydroxyl groups. Four of the pigments, comprising 91% of the total carotenoids are revealed as 5,6-monoepoxides by their instability toward dilute acid. One carotenoid resembles a diepoxide


Carotenoid Dinoflagellate Carbon Disulfide Fucoxanthin Partition Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schütt, F., Ber. deutsch. botan. Ges.8, 9–32 (1890).Google Scholar
  2. 2.
    Strain, H. H., W. M. Manning and G. Hardin, Biol. Bull.86, 169–191 (1944).Google Scholar
  3. 3.
    Pinckard, J. H., J. S. Kittredge, D. L. Fox, F. T. Haxo and L. Zechmeister, Arch. Biochem. Biophys.44, 189–199 (1953).PubMedCrossRefGoogle Scholar
  4. 4.
    Mackinney, G., J. Biol. Chem.132, 91–109 (1940).Google Scholar
  5. 5.
    Jeffrey, S. W., Biochem. J.80, 336–342 (1961).PubMedGoogle Scholar
  6. 6.
    Smith, J. H. C., and A. Benitez, in “Modern Methoden der Pflanzenanalyse” (Paech, K. and M. V. Tracey, eds.), Vol. 4, Springer-Verlag, Berlin, Göttingen and Heidelberg, 1955, p. 142–196.Google Scholar
  7. 7.
    Heilbron, I. M., H. Jackson and R. N. Jones, Biochem. J.29, 1384–1388 (1935).PubMedGoogle Scholar
  8. 8.
    Haxo, F. T., and D. C. Fork, Nature184, 1051–1052 (1959).PubMedCrossRefGoogle Scholar
  9. 9.
    Parsons, T. R., J. Fish. Res. Bd. Can.18, 1017–1025 (1961).Google Scholar
  10. 10.
    Sweeney, B. M., F. T. Haxo and J. W. Hastings, J. Gen. Physiol.43, 285–299 (1959).PubMedCrossRefGoogle Scholar
  11. 11.
    Riley, J. P. and T. R. S. Wilson, J. Marine Biol. Assoc. U. K.45, 583–591 (1965).CrossRefGoogle Scholar
  12. 12.
    Bunt, J. S., Nature203, 1261–1263 (1964).PubMedCrossRefGoogle Scholar
  13. 13.
    Fox, D. L., D. M. Updegraff and G. D. Novelli, Arch. Biochem.5, 1–23 (1944).Google Scholar
  14. 14.
    Provasoli, L., Proc. Internat. Seaweed Symp.4, 9–17 (1964).Google Scholar
  15. 15.
    Shibata, K., A. A. Benson and M. Calvin, Biochim. Biophys. Acta15, 461–470 (1954).PubMedCrossRefGoogle Scholar
  16. 16.
    Petracek, F. J., and L. Zechmeister, Anal. Chem.28, 1484–1485 (1956).CrossRefGoogle Scholar
  17. 17.
    Davies, B. H., in “Chemistry and biochemistry of plant pigments” (T. W. Goodwin, ed.), Academic Press, London and New York, 1965, p. 489–532.Google Scholar
  18. 18.
    Chapman, D. J., and F. T. Haxo, Plant Cell Physiol.4, 57–63 (1963).Google Scholar
  19. 19.
    Subbarayan, C., F. B. Jungalwala and H. R. Cama, Anal. Biochem.12, 275–281 (1965).CrossRefGoogle Scholar
  20. 20.
    Krinsky, N. I., Anal. Biochem.6, 293–302 (1963).PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas, D. M., and T. W. Goodsin, J. Phycol.1, 118–121 (1965).Google Scholar
  22. 22.
    Krinsky, N. I., and T. H. Goldsmith, Arch. Biochem.91, 271–279 (1960).PubMedCrossRefGoogle Scholar
  23. 23.
    Chapman, D. J., and F. T. Haxo, J. Phycol.2, 89–91 (1966).Google Scholar
  24. 24.
    Karrer, P., and A. Oswald, Helv. Chim. Acta18, 1303–1305 (1935).CrossRefGoogle Scholar
  25. 25.
    Tappi, G., and P. Karrer, Helv. Chim. Acta32, 50–55 (1949).CrossRefPubMedGoogle Scholar
  26. 26.
    Leadbeater, B., and J. D. Dodge, Br. Phycol. Bull.3, 1–17 (1966).Google Scholar
  27. 27.
    Bonnett, R., A. K. Mallams, J. L. Tee, B. C. L. Weedon and A. McCormick Chem. Comm.1966, 515–516 (1966).Google Scholar
  28. 28.
    Strickland, J. D. H., and T. R. Parson, Fish. Res. Bd. Can. Bull.125, 1–203 (1965).Google Scholar
  29. 29.
    Jeffrey, S. W., J. Ulrich and M. B. Allen, Biochem. Biophys. Acta112, 35–44 (1966).PubMedGoogle Scholar
  30. 30.
    Parsons, T. R., K. Stephens and J. D. H. Strickland, J. Fish. Res. Bd. Can.18, 1001–1016 (1961).Google Scholar
  31. 31.
    McAllister, C. D., N. Shah and J. D. H. Strickland, J. Fish. Res. Bd. Can.21, 159–181 (1964).Google Scholar
  32. 32.
    Heilbron, I. M., and B. Lythgoe, J. Chem. Soc. 1376–1380 (1936).Google Scholar
  33. 33.
    Jensen, A., Acta Chem. Scand.15, 1605–1607 (1961).CrossRefGoogle Scholar
  34. 34.
    Schimmer, B. P., and N. I. Krinsky, Biochemistry5, 3649–3657 (1966).PubMedCrossRefGoogle Scholar
  35. 35.
    Riley, J. P., and T. R. S. Wilson, J. Mar. Biol. Ass. U.K.47, 351–362 (1967).CrossRefGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1968

Authors and Affiliations

  • Alfred R. LoeblichIII
    • 1
  • V. Elliott Smith
    • 1
  1. 1.Department of Marine BiologyScripps Institution of OceanographyLa Jolla

Personalised recommendations