Advertisement

Density estimation for a class of stationary nonlinear processes

  • Kamal C. Chanda
Density Estimation
  • 41 Downloads

Abstract

Let {X t ;t∈ℤ be a strictly stationary nonlinear process of the formX t t +∑ r=1 W rt , whereW rt can be written as a functiong r t−1,...ε t-r-q ), {ε t ;t∈ℤ is a sequence of independent and identically distributed (i.i.d.) random variables withE1| g < ∞ for some γ>0 andq≥0 is fixed integer. Under certain mild regularity conditions ofg r and {ε t } we then show thatX 1 has a density functionf and that the standard kernel type estimator\(\hat f_n (x)\) baded on a realization {X 1,...,X n } from {X t } is, asymptotically, normal and converges a.s. tof(x) asn→∞.

Key words and phrases

Nonlinear process kernel type density estimators bilinear process central limit theorem almost sure convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, R. (1977). Strong consistency of density estimation by orthogonal series methods for dependent variables with applications, Tech. Report, McMaster University, Ontario.Google Scholar
  2. Bradley, R. C. (1983). Asymptotic normality of some kernel-type estimators of probability density,Statist. Probab. Lett.,1, 295–300.CrossRefMathSciNetGoogle Scholar
  3. Chanda, K. C. (1983). Density estimation for linear processes,Ann. Inst. Statist. Math.,35, 439–446.CrossRefMathSciNetGoogle Scholar
  4. Chanda, K. C. (1991). Stationarity and central limit theorem associated with bilinear time series models,J. Time. Ser. Anal.,12, 301–313.MathSciNetGoogle Scholar
  5. Chanda, K. C. (1995). Correction to “Density estimation for linear processes” (submitted toAnn. Inst. Statist. Math.).Google Scholar
  6. Delacroix, M. (1977). Central limit theorems for density estimators of aL 2-mixing process,Recent Developments in Statistics (eds. J. R. Barraet al.), 409–414, North Holland, Amsterdam.Google Scholar
  7. Devroy, L. (1987).A Course in Density Estimation, Birkhäuser, Boston.Google Scholar
  8. Györfi, L., Hardle, W., Sarda, P. and Vieu, P. (1989).Non-parametric Curve Estimation from Time Series, Lecture Notes in Statist., No.60, Springer, Berlin.Google Scholar
  9. Hall, P. and Hart, J. (1990). Convergence rates in density estimation for data from infinite-order moving average processes,Probab. Theory Related Fields,87, 253–274.CrossRefMathSciNetGoogle Scholar
  10. Hallin, M. and Tran, L. T. (1996). Kernel density estimation for linear processes: Asmyptotic normality and optimal bandwidth derivation,Ann. Inst. Statist. Math.,48, 429–449.CrossRefMathSciNetGoogle Scholar
  11. Ibragimov, I. A. and Khasminskii, R. Z. (1982). Estimation of distribution density belonging to a class of entire functions.Theory Probab. Appl.,27, 551–562.CrossRefGoogle Scholar
  12. Liu, J. and Brockwell, P. J. (1988). On the general bilinear time series model,J. Appl. Probab.,25, 553–564.CrossRefMathSciNetGoogle Scholar
  13. Masry, E. (1983). Probability density estimation from samples data,IEEE Trans. Inform. Theory,29, 696–709.CrossRefMathSciNetGoogle Scholar
  14. Parzen, E. (1962). On the estimation of a probability density function and the mode,Ann. Math. Statist.,33, 1065–1076.MathSciNetGoogle Scholar
  15. Pham, D. T. (1986). The mixing property of bilinear and generalized random coefficient autoregressive models,Stochastic Process. Appl.,23, 291–300.CrossRefMathSciNetGoogle Scholar
  16. Prakasa Rao, B. L. S. (1983).Nonparametric Functional Estimation, Academic Press, New York.zbMATHGoogle Scholar
  17. Robinson, P. M. (1983). Nonparametric estimators for time series,J. Time Ser. Anal.,4, 185–207.MathSciNetGoogle Scholar
  18. Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function.Ann. Math. Statist.,27, 832–837.MathSciNetGoogle Scholar
  19. Rosenblatt, M. (1970). Density estimates and Markov sequences,Nonparametric Techniques in Statistical Inference (ed. M. Puri) 199–210, Cambridge University Press, London.Google Scholar
  20. Rosenblatt, M. (1971). Curve estimates,Ann. Math. Statist.,42, 1815–1842.MathSciNetGoogle Scholar
  21. Tran, L. T. (1992). Kernel density estimation for linear processes,Stochastic Process. Appl.,26, 281–296.CrossRefMathSciNetGoogle Scholar

Copyright information

© The Institute of Statistical Mathematics 2003

Authors and Affiliations

  • Kamal C. Chanda
    • 1
  1. 1.Department of Mathematics and StatisticsTexas Tech UniversityLubbockUSA

Personalised recommendations