, Volume 200, Issue 1, pp 367–377 | Cite as

Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components

  • Brian Moss
Part Five: Macrophytes


Engineering approaches (nutrient removal, sediment pumping, hypolimnion oxygenation, alum treatments) may be most appropriate to deep lakes where the aim of restoration from eutrophication is simply to reduce the production and crop of one component, the phytoplankton. They do not always give the desired results because the nutrient loading may only be reduced to a limited extent. There are additional problems in shallow lakes where change of state between community dominance (aquatic plants versus plankton) is wanted. Each community has powerful buffering mechanisms and biomanipulation may be essential to switch one state to another even with considerable nutrient reduction.

For the phytoplankton-dominated community the buffers include the advantages of early growth, lower diffusion pathways for CO2, overhead shading, and an absence of large cladoceran grazers. This later is because open-water shallow environments provide no refuges against predation for the large Cladocera which are both the most efficient grazers and the most favoured prey for fish. Restoration of aquatic plants may then require provision of refuges for the grazers. Different sorts of refuge are discussed using case studies of Hoveton Great Broad and Cockshoot Broad in the Norfolk Broadland.

Key words

lake restoration eutrophication biomanipulation aquatic plants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anglian Water, 1987. The control of phosphorus in the catchment of the Rivers Ant and Bure. 1st Annual Report. Norwich, 12 pp.Google Scholar
  2. Balls, H., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication. I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broadland. Freshwat. Biol. 22: 71–87.CrossRefGoogle Scholar
  3. Barica, J. M., 1988. Recovery of the Laurentian Great Lakes, 1970–1985: Eutrophication aspects. Environment Canada, NWRI Contribution 88-44, 15 pp.Google Scholar
  4. Bengtsson, L., S. Fleischer, G. Lindmark & W. Ripl, 1975. Lake Trummen Restoration Project. I. Water and sediment chemistry. Verh. int. Ver. theor. angew. Limnol. 19: 1080–1087.Google Scholar
  5. Bernhardt, H., 1987. Strategies of lake sanitation. Schweiz. Z. Hydrol. 49: 202–219.Google Scholar
  6. Bernhardt, H., 1988. Input control of nutrient by chemical and biological methods. Water supply 1: 187–206.Google Scholar
  7. Bernhardt, H. & J. Clasen, 1985. Recent developments and perspectives of restoration for artificial basins. In R. Vismara, R. Marforio, V. Mezzanotte & S. Cernuschi (eds)Lake Pollution and Recovery. Europ. Wat. Pollut. Contr. Ass, Rome: 292–307.Google Scholar
  8. Bjork, S., 1985. Scandinavian lake restoration activities. In R. Vismara, R. Marforio, V. Mezzanotte & S. Cernuschi (eds)Lake Pollution and Recovery. Europ. Wat. Pollut. Contr. Ass, Rome: 373–382.Google Scholar
  9. Boar, R. R., C. E. Crook & B. Moss, 1989. Regression ofPhragmites australis reedswamps and recent changes of water chemistry in the Norfolk Broadland, England. Aquat. Bot. 35: 41–55.CrossRefGoogle Scholar
  10. Bondi, H., 1985. A model of discontinuous change in a three-component community. Proc. Roy. Soc. London B 224: 1–6.CrossRefGoogle Scholar
  11. Boorman, L. A. & R. M. Fuller, 1981. The changing status of reedswamp in the Norfolk Broads. J. Appl. Ecol. 18: 241–269.CrossRefGoogle Scholar
  12. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.CrossRefGoogle Scholar
  13. Collingwood, R. W., 1977. A survey of eutrophication in Britain and its effects on water supplies. Technical Report TR40. Water Research Centre, Medmenham, 46 pp.Google Scholar
  14. Collins, M., 1978. Algal toxins. Microbiol. Rev. 42: 725–746.PubMedGoogle Scholar
  15. Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodies and small-bodied cladocerans. Hydrobiologia 200/201: 43–47.Google Scholar
  16. Davis, J. C., 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Res. Bd Canada 32: 2295–2332.Google Scholar
  17. De Nie, A. W., 1987. The decrease in aquatic vegetation in Europe and its consequences for fish populations. EIFAC Occasional Paper 19. FAO, Rome, 88 pp.Google Scholar
  18. Denny, P., 1980. Solute movement in submerged angiosperms. Biol. Rev. 50: 65–92.Google Scholar
  19. Dillon, P. J. & F. H. Rigler, 1974. A test of a simply method for predicting the capacity of a lake for development based on lake trophic status. J. Fish. Res. Bd Canada 32: 1519–1531.Google Scholar
  20. Dobson, H. F., 1981. Trophic conditions and trends in the Laurentian Great Lakes. W.H.O. Water Qual. Bull. 6: 146–160.Google Scholar
  21. Edmondson, W. T., 1985. Recovery of Lake Washington from eutrophication. In R. Vismara, R. Marforio, V. Mezzanotte & S. Cernuschi (eds) Lake Pollution and Recovery. Europ. Wat. Pollut. Contr. Ass., Rome: 308–315.Google Scholar
  22. Engel, S., 1987. The restructuring of littoral zones. Lake and Res. Man. 3: 235–242.Google Scholar
  23. Fitzgerald, G. P., 1969. Some factors in the competition or antagonism among bacteria, algae and aquatic weeds. J. Phycol. 5: 351–359.Google Scholar
  24. Gliwicz, Z. M., 1990. Why do cladocera fail to control algal blooms? Hydrobiologia 200/201: 83–97.Google Scholar
  25. Holdway, P. A., R. A. Watson & B. Moss, 1978. Aspects of the ecology ofPrymnesium parvum (Haptophyta) and water chemistry in the Norfolk Broads, England. Freshwat. Biol. 8: 295–311.CrossRefGoogle Scholar
  26. Howard-Williams, C., 1981. Studies on the ability of aPotamogeton pectinatus community to remove dissolved nitrogen and phosphorus compounds from lake water. J. appl. Ecol. 18: 619–637.CrossRefGoogle Scholar
  27. Irvine, K., B. Moss & J. H. Stansfield, 1990. The potential of artificial refugia for maintaining a community of large-bodied cladocera against fish predation in shallow eutrophic lake. Hydrobiologia 200/201: 379–389.Google Scholar
  28. Jeppesen, E., M. Søndergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjaer, J. P. Jensen, K. Christoffersen, S. Bosselmann & E. Dall, 1990. Fish manipulation as a lake restoration toolin shallow, eutrophic temperate lakes 1: cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–218.Google Scholar
  29. Jhingran, V. G., 1975. Fish & Fisheries of India Hindustan Publishing Corporation, Delhi., 740 pp.Google Scholar
  30. Keto, J. & I. Sammalkorpi, 1988. A fading recovery: a conceptual model for Lake Vesijarvi management and research. Aquat. Fenn. 18: 193–204.Google Scholar
  31. Maberley, S. C. & D. H. N. Spence, 1983. Photosynthetic inorganic carbon use by freshwater plants. J. Ecol. 71: 705–724.CrossRefGoogle Scholar
  32. Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment release. Freshwat. Biol. 21: 139–162.CrossRefGoogle Scholar
  33. McQueen, D. J., M. R. S. Johannes, N. R. Lafontaine, A. S. Young, E. Longbotham & D. R. S. Lean, 1990. Effects of planktivore abundance on chlorophyll-a and Secchi depth. Hydrobiologia 200/201: 337–341.Google Scholar
  34. McQueen, D. J. & D. R. S. Lean, 1986. Hypolimnetic aeration: an overview. Wat. Pollut. Res. J. Canada 21: 205–217.Google Scholar
  35. Meijer, M.-L., A. J. P. Raat & R. W. Doef, 1989. Restoration by biomanipulation of the Dutch shallow, eutrophic Lake Bleiswijkse zoom: first results. Hydrobiol. Bull. 23: 49–58.CrossRefGoogle Scholar
  36. Mitchell, D. S., (Ed), 1974. Aquatic Vegetation and its Control UNESCO, Paris, 159 pp.Google Scholar
  37. Moss, B., 1983. The Norfolk Broadland: Experiments in the restoration of a complex wetland. Biol. Rev. 58: 521–561.Google Scholar
  38. Moss, B., 1987. The Broads. Biologist 34: 7–13.Google Scholar
  39. Moss, B., 1989. Water pollution and the management of exosystems: a case study of science and scientist. In P. J. Grubb & J. H. Whittaker (eds) Towards a More Exact Ecology. Blackwell Scientific, Oxford: pp. 401–423.Google Scholar
  40. Moss, B., H. Balls, K. Irvine & J. Stansfield, 1986. Restoration of two lowland lakes by isolation from nutrient-rich water sources with and without removal of sediment. J. appl. Ecol. 23: 391–414.CrossRefGoogle Scholar
  41. Moss, B. & R. T. Leah, 1982. Changes in the ecosystem of a guanotrophic and brackish shallow lake in Eastern England: potential problems in its restoration. Int. Revue ges. Hydrobiol. 67: 625–659.Google Scholar
  42. Murphy, T. P., K. G. Hall & T. G. Northcote, 1988. Lime treatment of a hardwater lake to reduce eutrophication. Lake and Res. Man. 4: 51–62.Google Scholar
  43. Ozimek, T., R. D. Gulati, E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200/201: 399–407.Google Scholar
  44. Organisation for Economic Co-operation and Development (OECD), 1982.Eutrophication of Waters. Paris, 155 pp.Google Scholar
  45. Rosa, F., 1987. Lake Erie central basin total phosphorus trend analysis from 1968 to 1982. J. Gt Lakes Res. 13: 667–673.Google Scholar
  46. Scheffer, M., 1989. Alternative stable states in eutrophic shallow fresh water systems: a minimal model. Hydrobiol. Bull. 23: 73–84.CrossRefGoogle Scholar
  47. Shapiro, J., 1990. Biomanipulation: The next phase — making it stable. Hydrobiologia 200/201: 13–27.Google Scholar
  48. Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation. Freshwat. Biol. 14: 371–383.CrossRefGoogle Scholar
  49. Simpson, P. S. & J. W. Eaton, 1986. Comparative studies of the photosynthesis of the submerged macrophyteElodea canadensis and filamentous algaeCladophora glomerata andSpirogyra sp. Aquat. Bot. 14: 1–12.CrossRefGoogle Scholar
  50. Smith, G. R., 1978. Botulism, waterfowl and mud. Brit. Vet. J. 134: 407–411.Google Scholar
  51. Søndergaard, M., E. Jeppesen, E. Mortensen, E. Dall, P. Kristensen & O. Sortkjaer, 1990. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200/201: 229–240.Google Scholar
  52. Stansfield, J. H., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication III. Potential role of organochlorine pesticides: a palaeoecological study. Freshwat. Biol. 22: 109–132.CrossRefGoogle Scholar
  53. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a freshwater wetland ecosystem. Limnol. Oceanogr. 29: 472–486.CrossRefGoogle Scholar
  54. Toth, L., 1972. Reeds control eutrophication of Balaton Lake. Wat. Res. 6: 1533–1539.CrossRefGoogle Scholar
  55. Van Donk, E., R. D. Gulati & M. P. Grimm, 1989. Food-web manipulation in Lake Zwemlust, in the two years after biomanipulation. Hydrobiol. Bull. 23: 19–34.CrossRefGoogle Scholar
  56. Van Vierssen, W. & Th. C. Prins, 1985. On the relationship between the growth of algae and aquatic plants in brackish water. Aquat. Bot. 21: 165–179.CrossRefGoogle Scholar
  57. Welch, E. B., C. L. De Gasperi, D. C. Spyridakis & T. J. Belnick, 1988. Internal phosphorus loading and alum effectiveness in shallow lakes. Lake and Res. Man. 4: 27–33.CrossRefGoogle Scholar
  58. Winfield, I., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach,Rutilus rutilus, rudd,Scardinius erythrophthalmus and perch,Perca fluviatilis. J. Fish Biol. 29 Supplement A: The Behaviour of Fishes: 37–48.CrossRefGoogle Scholar
  59. Zutshi, D. P. & A. Ticku, 1990. Impact of mechanical deweeding on Dal Lake ecosystem. Hydrobiologia 200/201: 419–426.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Brian Moss
    • 1
  1. 1.Department of Environmental & Evolutionary BiologyUniversity of LiverpoolUK

Personalised recommendations