, Volume 200, Issue 1, pp 291–301 | Cite as

First attempt to apply whole-lake food-web manipulation on a large scale in The Netherlands

  • E. Van Donk
  • M. P. Grimm
  • R. D. Gulati
  • P. G. M. Heuts
  • W. A. de Kloet
  • L. van Liere
Part Four: Whole Lake Studies


Lake Breukeleveen (180 ha, mean depth 1.45 m), a compartment of the eutrophic Loosdrecht lakes system, was selected to study the effects of whole-lake foodweb manipulation on a large scale. In Lake Loosdrecht (dominated by filamentous cyanobacteria), due to water management measures taken from 1970–1984 (sewerage systems, dephosphorization) the external P load has been reduced from 1.2 g m−2 y−1 to 0.35 g m−2 y−1. The water transparency (Secchi-depthca. 30 cm), however, has not improved. The aim of the food-web manipulation in Lake Breukeleveen was not only to improve the light climate of the lake, but also to study if the successfull effects observed in small lakes (a few ha) can be upscaled. In March 1989 the standing crop of planktivorous and bentivorous fish populations was reduced by intensive fishery, fromca. 150 kg ha−1 toca. 57 kg ha−1. The lake was made unaccessible to fish migrating from the other lakes and it was stocked with large-sized daphnids and 0+ pike. However, water transparency did not increase in the following summer and autumn 1989, which is in contrast with great improvement in the light conditions previously observed in smaller lakes. The main explanations for the negative outcome in Lake Breukeleveen are: 1) the rapid increase of the planktivorous fish biomass and carnivorous cladocerans, predating on the zooplankton community; 2) suppression of the large daphnids by the high concentrations of filamentous cyanobacteria; 3) high turbidity of the lake due to resuspension of bottom material induced by wind, unlike in smaller lakes, and thus inability of submerged macrophytes to develop and to stabilize the ecosystem.

Key words

Biomanipulation whole-lake experiment lake restoration Lake Breukeleveen planktivore fish Daphnia predation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Best, E. P., D. De Vries & A. Reins, 1984. The macrophytes in the Loosdrecht Lakes: A story of their decline in the course of eutrophication. Verh. Int. Ver. Limnol. 22: 868–875.Google Scholar
  2. Beukema, J. J. & G. J. de Vos, 1974. Experimental tests of a basic assumption of the capture-recapture method in pond populations of carp,Cyprinus carpio L. Fish. Biol. 6: 317–329.CrossRefGoogle Scholar
  3. Buck, D. H. & Ch. F. Thoits, 1965. An evaluation of Petersen estimation procedures employing seines in 1-acre ponds. J. Wildlife Mgmt. 29: 598–621.Google Scholar
  4. Burger-Wiersma, T., M. Veenhuis, H. J. Korthals, C. C. M. Van Wiel & L. R. Mur, 1986. A new prokaryote containing chlorphyllsa andb. Nature 320: 262–264.CrossRefGoogle Scholar
  5. Burns, C. W., 1968. Direct observations of mechanisms regulating feeding behavior of Daphnia in lake water. Int. Rev ges. Hydrobiol. 53: 83–100.Google Scholar
  6. Canter, H. M., 1972. A guide to the fungi occurring on planktonic blue-green algae. In T. V. Diskachary (ed.), Proceedings of the Symposium on Taxonomy and Biology of Blue-green Algae. Univ. of Madras: 148–158.Google Scholar
  7. Dawidowicz, P., Z. M. Gliwicz & R. D. Gulati, 1988. CanDaphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test. Limnologica (Berlin) 19: 21–26.Google Scholar
  8. De Kloet, W. A., P. J. Boesewinkel-de Bruijn & B. Z. Salome, 1984. The phytoplankton and its production rates in the Loosdrecht lakes. Verh. Int. Ver. Limnol. 22: 848–852.Google Scholar
  9. Edmondson, W. T. & A. H. Litt, 1982.Daphnia in Lake Washington. Limnol. Oceanogr. 27: 272–293.CrossRefGoogle Scholar
  10. Frost, T. M., D. L. DeAngelis, S. M. Bartell, D. J. Hall & S. H. Hurlbert, 1988. Scale in the design and interpretation of aquatic community research. In S. R. Carpenter (ed.), Complex interactions in lake communities. Springer-Verlag: 229–261.Google Scholar
  11. Gliwicz Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekol. pol. 25: 179–225.Google Scholar
  12. Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201: 83–97.Google Scholar
  13. Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.): Plankton Ecology: Succession in planktonic communities. Springer, Heidelberg: 253–297.Google Scholar
  14. Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201: 83–91.Google Scholar
  15. Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.): Plankton Ecology: Succession in planktonic communities. Springer, Heidelberg: 253–297.Google Scholar
  16. Gons, H. J., 1987. The relationship between water transparancy and suspended particles in the Loosdrecht lakes, with regard to swimming water standards (in Dutch). Internal Report 1987-12; WQL Report, 61 p.Google Scholar
  17. Gulati, R. D., 1984. The zooplankton and its grazing as measures of trophy in the Loosdrecht Lakes. Verh. Int. Ver. Limnol. 22: 863–868.Google Scholar
  18. Gulati, R. D., 1989. Structure and feeding activity of zooplankton community in Lake Zwemlust, in the two years after biomanipulation. Hydrobiol. Bull. 23: 35–49.CrossRefGoogle Scholar
  19. Gulati, R. D., 1990. Zooplankton structure in the Loosdrecht lakes in relation to trophic status and recent restoration measures. Hydrobiologia 191: 173–188.CrossRefGoogle Scholar
  20. Kal, B. F. M., G. B. Engelen & Th. E. Cappenberg, 1984. Loosdrecht lakes restoration project: Hydrology and physico-chemical characteristics of the lakes. Verh. int. Ver. Limnol. 22: 835–841.Google Scholar
  21. Karabin, A., 1974. Studies on the predatory role of the cladoceranLeptodora kindtii (Focke) in secondary production of two lakes with different trophy. Ekol. Pol. 22: 295–310.Google Scholar
  22. Leentvaar, P. & M. F. Mörzer Bruijns, 1962. The population of the Loosdrecht lakes and its consequences. Levende Natuur 65: 42–48 (in Dutch).Google Scholar
  23. Loogman, J. G. & L. Van Liere (eds), 1986. Restoration of shallow lake ecosystems with emphasis on Loosdrecht Lakes. Hydrobiol. Bull. 20: 269.Google Scholar
  24. Mordukhai-Boltovskaya, E. D., 1958. Preliminary notes on the feeding of the carnivorous cladoceransLeptodora kindtii andBythotrepes. Dokl. Biol. Sci. Sect. 122: 828–830.Google Scholar
  25. Richman, S. & S. I. Dodson, 1983. The effect of food quality on feeding and respiration byDaphnia andDiaptomus. Limnol. Oceanogr. 28: 948–956.Google Scholar
  26. Thompson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the deriviation of a community grazing index. J. Plankton Res. 4: 545–560.Google Scholar
  27. Threlkeld, S. T., 1985. Resource variation and the initiation of midsummer declines of cladoceran populations. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 333–340.Google Scholar
  28. Van Densen, W. L. T., C. Dijkers & R. Veerman, 1986. The fish community of the Loosdrecht lakes and the perspective for biomanipulation. Hydrobiol. Bull. 20: 147–163.CrossRefGoogle Scholar
  29. Van Donk, E. & J. Ringelberg, 1983. The effect of fungal parasitism on the succession of diatoms in Lake Maarssenveen (The Netherlands). Freshwat. Biol. 13: 241–251.CrossRefGoogle Scholar
  30. Van Donk, E., R. D. Gulati & M. P. Grimm, 1989. Food-web manipulation in Lake Zwemlust: positive and negative effects during the first two years. Hydrobiol. Bull. 23: 19–35.CrossRefGoogle Scholar
  31. Van Donk, E., M. P. Grimm, R. D. Gulati & J. P. G. Klein Breteler, 1990. Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200/201: 275–289.Google Scholar
  32. Van Liere, L., 1986. Loosdrecht lakes, origin, eutrophication, restoration and research programme. Hydrobiol. Bull. 20: 9–15.CrossRefGoogle Scholar
  33. Van Liere, L., R. D. Gulati, F. G. Wortelboer & E. H. R. R. Lammens, 1990. Phosphorus dynamics following restoration measures in Loosdrecht lakes. Hydrobiologia 191: 89–96.CrossRefGoogle Scholar
  34. Van Liere, L., O. F. R. Van Tongeren, L. Breebaart & W. Kats (in press). Trends in chlorophyll and total phosphorus in Loosdrecht lakes, the Netherlands. Verh. Int. Ver. Limnol. 24.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • E. Van Donk
    • 1
  • M. P. Grimm
    • 2
  • R. D. Gulati
    • 3
  • P. G. M. Heuts
    • 1
  • W. A. de Kloet
    • 3
  • L. van Liere
    • 3
  1. 1.Provincial Waterboard of UtrechtUtrechtThe Netherlands
  2. 2.Witteveen & Bos, Consulting EngineersDeventerThe Netherlands
  3. 3.Limnological Institute, ‘Vijverhof’ laboratoryNieuwersluisThe Netherlands

Personalised recommendations