Hydrobiologia

, Volume 200, Issue 1, pp 83–97

Why do cladocerans fail to control algal blooms?

  • Z. Maciej Gliwicz
Part Two: Zooplankton-Phytoplankton Interactions

Abstract

Field studies show that even at high nutrient loads phytoplankton may be kept at low levels by filter-feeding zooplankton for a period of weeks (spring clear water phase in lakes) or months (low-stocked fish-ponds). In the absence of planktivorous fish, large-bodied cladocerans effectively control the abundance of algae of a broad size spectrum. Laboratory experiments show that, although difficult to handle and of poor nutritional value, filamentous algae can also be utilized by large-bodiedDaphnia and prevented from population increase, exactly as the principles of the biomanipulation approach would predict.

This is not always the case, however. Even when released from predation, large cladocerans often cannot grow and reproduce fast enough to prevent bloom formation. Sometimes, they disappear when the bloom becomes dense, and the biomanipulation approach is not applicable any more.

Recent experimental data on four differently-sizedDaphnia species are used in an attempt to (1) explain why cladocerans fail to control filamentous cyanobacteria when filament density is high, and (2) determine the critical filament density at whichDaphnia becomes ineffective. At this critical concentration,Daphnia growth and reproduction is halted, and no positive numerical response to growing phytoplankton standing crop should be expected fromDaphnia population. Bloom formation thus becomes irreversible. The question of what can be done to overcome this bottleneck of the biomanipulation approach may become one of the most challenging questions in plankton ecology in the nearest future.

Key words

biomanipulation blue-green blooms Daphnia cladocerans cyanobacteria eutrophic lakes filtering rates grazing pressure phytoplankton control summer declines zooplankton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, G., H. Bergren, G. Cronberg & C. Gellin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.CrossRefGoogle Scholar
  2. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.CrossRefPubMedGoogle Scholar
  3. Benndorf, J., H. Kneschke, K. Kossatz & E. Penz, 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Int. Revue ges. Hydrobiol. 69: 407–428.Google Scholar
  4. Bogatova, I., 1965. The food of daphnids and diaptomids in ponds. Trudy Vserossivskogo nauchno-issledovatel'skogo instituta prudova rybnovo khozyaistva, voprosy prudovovo rybovodstva 13: 165–178.Google Scholar
  5. Burns, C. W., 1968. Direct observation of mechanisms regulating feeding behavior of Daphnia in lake water. Int. Revue ges. Hydrobiol. 53: 83–100.Google Scholar
  6. Burns, C. W., 1969. Relation between filtering rate, temperature and body size in four species ofDaphnia. Limnol. Oceanogr. 14: 423–440.Google Scholar
  7. Burns, C. W., 1987. Insights into zooplankton-cyanobacteria interactions derived from enclosure studies. N.Z.J. mar. Freshwat. Res. 21: 477–482.Google Scholar
  8. Burns, C. W., D. J. Forsyth, J. F. Haney, M. R. James, W. Lampert & R. D. Pridmore, (submitted). Coexistence and exclusion of zooplankton byAnabaena minutissima var.attenuata in Lake Rotongaio, New Zealand. Arch. Hydrobiol. Beih. Ergebn. Limnol.Google Scholar
  9. Dawidowicz, P., 1989. Conditions which must be fullfilled to allow efficient control of phytoplankton by zooplankton. Ph. D. Thesis, University of Warsaw (in Polish), 48 pp.Google Scholar
  10. Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200/201: 43–47.Google Scholar
  11. Dawidowicz, P & Z. M. Gliwicz, 1987. Biomanipulation. III. The role of direct and indirect relationship between phytoplankton and zooplankton. Wiadomosci Ekolog. 33: 259–277.Google Scholar
  12. Dawidowicz, P., Z. M. Gliwicz & R. D. Gulati, 1988. CanDaphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test. Limnologica (Berlin) 19, 1: 21–26.Google Scholar
  13. De Bernardi, R. & G. Giussani, 1978. Effect of mass fish mortality on zooplankton structure and dynamics in a small Italian lake (Lago di Annone). Verh. int. Ver. Limnol. 20: 1045–1048.Google Scholar
  14. De Bernardi, R., G. Giussani & E. Lasso Pedretti, 1981. The significance of blue-green algae as food for filter-feeding zooplankton: experimental studies onDaphnia spp. fed byMicrocystis aeruginosa. Verh. int. Ver. Limnol. 21: 477–483.Google Scholar
  15. DeMott, W. R., 1989. The role of food limitation and competition in zooplankton seasonal succession. In U. Sommer (ed.), Plankton ecology: Succession in planktonic communities. Springer, Heidelberg: 195–252.Google Scholar
  16. Dodson, S. I., 1974. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.CrossRefGoogle Scholar
  17. Edmondson, W. T. & A. H. Litt, 1982.Daphnia in Lake Washington. Limnol. and Oceanogr. 27: 272–293.Google Scholar
  18. Elliott, E. T., D. Casranares, D. Perlmutter & K. G. Porter, 1983. Trophic level control of production and nutrient dynamics in experimental planktonic community. Oikos 41: 7–16.CrossRefGoogle Scholar
  19. Fott, J., L. Pechar & M. Prazakova, 1980. Fish as a factor controlling water quality in ponds. Dev. Hydrobiol. 2: 255–261.Google Scholar
  20. Fretwell, S. F., 1977. The regulating of plant communities by the food chains exploiting them. Persp. Biol. Med. 20: 169–185.Google Scholar
  21. Fulton III, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwat. Biol. 20: 263–271.CrossRefGoogle Scholar
  22. Fulton III, R. S. & M. W. Pearl, 1988. Effects of blue-green algaeMicrocystis aeruginosa on zooplankton competitive relations. Oecologia (Berlin) 76: 383–389.Google Scholar
  23. Geller, W. & H. Muller, 1981. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia (Berlin) 49: 316–321.CrossRefGoogle Scholar
  24. Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. pol. A. 17: 65–708.Google Scholar
  25. Gliwicz, Z. M., 1975. Effect of zooplankton grazing on photosynthetic activity and composition of phytoplankton. Verh. int. Ver. Limnol. 19: 1490–1497.Google Scholar
  26. Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekol. pol. 25: 179–225.Google Scholar
  27. Gliwicz, Z. M., 1980. Filtering rates, food size selection, and feeding rates in cladocerans — another aspect of interspecific competition in filter-feeding zooplankton. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, Hanover: 282–291.Google Scholar
  28. Gliwicz, Z. M., 1985. Predation of food limitation: an ultimate reason for extinction of planktonic cladoceran species. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 419–430.Google Scholar
  29. Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.CrossRefGoogle Scholar
  30. Gliwicz, Z. M., in press.Daphnia growth at different concentrations of cyanobacteria filaments. Arch. Hydrobiol.Google Scholar
  31. Gliwicz, Z. M. & W. Lampert, in press. Food thresholds in threeDaphnia species in the absence and in the presence of blue-green filaments. Ecology.Google Scholar
  32. Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.), Plankton ecology: Succession in planktonic communities. Springer, Heidelberg: 253–296.Google Scholar
  33. Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interferring with food collection inDaphnia. Arch. Hydrobiol. 88: 155–177.Google Scholar
  34. Goad, J., 1984. A biomanipulation experiment in Green Lake, Seattle, Washington. Arch. Hydrobiol. 102: 137–153.Google Scholar
  35. Hanazato, T. & M. Yasuno, 1984. Growth, reproduction and assimilation ofMoina macropoda fed onMycrocystis and/orChlorella. Jap. J. Ecol. 34: 195–202.Google Scholar
  36. Haney, J. F., 1987. Field studies on zooplankton-cyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 467–475.Google Scholar
  37. Hanski, I. & E. Ranta, 1983. Coexistence in a patchy environment: three species ofDaphnia in rock pools. J. anim. Ecol. 52: 263–279CrossRefGoogle Scholar
  38. Hartman, H. J., 1985. Feeding ofDaphnia pulicaria andDiaptomus ashlandi on mixtures of unicellular and filamentous algae. Verh. int. Ver. Limnol. 22: 3178–3183.Google Scholar
  39. Hawkins, P. & W. Lampert, in press. The effect ofDaphnia body size on filtering rate inhibition, in the presence of a filamentous cyanobacterium. Limnol. Oceanogr.Google Scholar
  40. Holm, N. P., G. G. Ganf & J. Shapiro, 1983. Feeding and assimilation rates ofDaphnia pulex fedAphanizomenon flos-aquae. Limnol. Oceanogr. 28: 677–687.Google Scholar
  41. Holm, N. P. & J. Shapiro, 1984. An examination of lipid reserves and the nutritional status ofDaphnia pulex fedAphanizomenon flos-aquae. Limnol. Oceanogr. 29: 1137–1140.Google Scholar
  42. Hrbáček, J., 1962. Species composition and amount of the zooplankton in relation to the fish stock. Rozpr. Česk. Akad. Ved, Rada Mat. Prir. Ved, 10: 1–116.Google Scholar
  43. Hrbáček, J., B. Desortova & J. Popovsky, 1978. Influence of the fish stock on the phosphorus-chlorophyll ratio. Verh. int. Ver. Limnol. 20: 1624–1628.Google Scholar
  44. Infante, A., 1973. Untersuchungen über die Ausnutzbarkeit verschledener Algen durch das Zooplankton. Arch. Hydrobiol., Suppl. 42: 340–405.Google Scholar
  45. Infante, A. & S. E. B. Abella, 1985. Inhibition ofDaphnia byOscillatoria in Lake Washington. Limnol. Oceanogr. 30: 1046–1052.Google Scholar
  46. Infante, A. & W. Riehl, 1984. The effect ofCyanophyta upon zooplankton in a eutrophic tropical lake. Hydrobiologia 113: 293–298.CrossRefGoogle Scholar
  47. Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia (Berlin) 69: 86–94.CrossRefGoogle Scholar
  48. Lampert, W., 1978. Climatic conditions and planktonic interactions as factors controlling the regular succession of spring algal bloom and extremely clear water in Lake Constance. Verh. int. Ver. Limnol. 20: 969–974.Google Scholar
  49. Lampert, W., 1981. Inhibitory and toxic effects of blue-green algae onDaphnia. Int. Revue ges. Hydrobiol. 66: 285–298.Google Scholar
  50. Lampert, W., 1982. Further studies on the inhibitory effects of toxic blue-greenMicrocystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol. 95: 207–220.Google Scholar
  51. Lampert, W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 483–490.CrossRefGoogle Scholar
  52. Lampert, W., 1988. The relationship between zooplankton biomass and grazing. A review. Limnologica (Berlin) 19,1: 1–20.Google Scholar
  53. Lehman, J. T., 1980. Release cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.Google Scholar
  54. Lynch, M., 1977. Fitness and optimal size in zooplankton populations. Ecology 58: 763–774.CrossRefGoogle Scholar
  55. Lynch, M., 1979. Predation, competition, and zooplankton structure: An experimental study. Limnol. Oceanogr. 24: 253–272.Google Scholar
  56. Lynch, M., 1980.Aphanizomenon blooms: Alternate control and cultivation byDaphnia pulex in W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, Hanover: 229–304.Google Scholar
  57. Lynch, M. & J. Shapiro, 1981. Predation, enrichment and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.Google Scholar
  58. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.CrossRefGoogle Scholar
  59. Nizan, S., C. Dimentman & M. Shilo, 1986. Acute toxic effects of cyanobacteriumMicrocystis aeruginosa onDaphnia magna. Limnol. Oceanogr. 31: 497–502.Google Scholar
  60. Peters, R. H., 1975. Phosphorus excretion and the measurement of feeding and assimilation by zooplankton. Limnol. Oceanogr. 20: 858–859.Google Scholar
  61. Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.CrossRefGoogle Scholar
  62. Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–70.Google Scholar
  63. Porter, K. G. & R. McDonough, 1984. the energetic cost of response to blue-green algae filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.Google Scholar
  64. Porter, K. G., & J. D. Orcutt, 1980. Nutritional adequacy, manage-ability, and toxicity as factors that determine the food quality of green and blue-green algae forDaphnia. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. University Press of New England, Hanover: 268–281.Google Scholar
  65. Reinertsen, H. & Y. Olsen, 1984. Effects of fish elimination on the phytoplankton community of an eutrophic lake. Verh. int. Ver. Limnol. 22: 649–657.Google Scholar
  66. Richman, S. & S. I. Dodson, 1983. The effect of food quality on feeding and respiration by ‘UDaphnia`u and ‘UDiaptomus`u. Limnol. Oceanogr. 28: 948–956.CrossRefGoogle Scholar
  67. Romanovsky, Y. E., 1984. Individual growth rate as a measure of competitive adventages in cladoceran crustaceans. Int. Revue ges. Hydrobiol. 69: 613–632.Google Scholar
  68. Romanovsky, Y., 1985. Food limitation and life-history strategies in cladoceran crustaceans. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 363–372.Google Scholar
  69. Scharf, E. M., P. V. Spittler & J.-A. Oertzen, 1979. Zum Einfluss vonMycrocystis aeruginosa (Cyanophyta) auf das Populationswachstum vonChydorus sphaericus (Cladocera). Wissenschaftl. Zeitschr. d. Univers. Rostock 28: 531–534.Google Scholar
  70. Schindler, D. W. & G. W. Comita, 1972. The dependence of primary production upon physical and chemical factors in a small senescing lake, including the effects of complete water oxygen depletion. Arch. Hydrobiol. 69: 413–451.Google Scholar
  71. Shapiro, J., D. I. Wright, 1984. Lake restauration by biomanipulation — Round Lake, Minnesota. Freshwat. Biol. 14: 371–383.CrossRefGoogle Scholar
  72. Shapiro, J., B. Forsberg, V. Lamarra, G. Lindmark, M. Lynch, E. Smeltzer & G. Zoto, 1982. Experiments and experiences in biomanipulation: Studies of ways to reduce algal abundance and eliminate blue-green. Interim. Rep. No. 19, Limnol. Res. center, Univ. of Minnesota, Minneapolis, 251 pp.Google Scholar
  73. Smith, F. E., 1969. Effects of enrichment in mathematical models. In Eutrophication: causes, consequences, correctives. Nat. Acad. Sci. Publ. 1700: 124–129.Google Scholar
  74. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106,4: 433–471.Google Scholar
  75. Sorokin, Yu. I., A. V. Monakov, Ye. D. Morduchaj-Boltovskaja, E. A. Tsichon-Lucanina & R. A. Rodova, 1965. Experiments on the applicability of the radiocarbon method for studying the trophic role of blue-green algae. Akad. Nauk. SSSR. Institut Biol. Vnutrenn. Vod: 235–240.Google Scholar
  76. Stenson, J. A. E., T. Bohlin, L. Henrikson, B. J. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larsson, 1978. Effect of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.Google Scholar
  77. Sterner, R. W., 1986. Herbivores' direct and indirect effects on algal populations. Science 231: 605–607.CrossRefPubMedGoogle Scholar
  78. Tessier, A. J. & C. E. Goulden, 1987. Cladoceran juvenile growth. Limnol. Oceanogr. 32: 680–686.Google Scholar
  79. Thompson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankton Res. 4: 545–560.Google Scholar
  80. Therlkeld, S. T., 1981. The midsummer dynamics of twoDaphnia species in Wintergreen Lake, Michigan. Ecology 60: 165–179.CrossRefGoogle Scholar
  81. Therlkeld, S. T., 1985. Resource variation and the initiation of midsummer declines of cladoceran populations. Arch. Hydrobiol. Beih. ergebn. Limnol. 21: 333–340.Google Scholar
  82. Tillmann, U. & W. Lampert, 1984. Competitive ability of differently sizedDaphnia species: An experimental test. J. Freshwat. Ecol. 2: 311–323.Google Scholar
  83. Vaga, R. M., D. A. Culver & C. A. Munch, 1985. The fecundity ratios ofDaphnia andBosmina as a function of inedible algal standing drop. Verh. int. Ver. Limnol. 22: 3072–3075.Google Scholar
  84. Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filters in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1245.CrossRefGoogle Scholar
  85. Zankai, N. P., 1983. Ingestion rates of someDaphnia species in a shallow lake (Lake Balaton, Hungary). Int. Revue ges. Hydrobiol. 68: 227–237.Google Scholar
  86. Zankai, N. P. & J. E. Ponyi, 1986. Composition, density and feeding of crustacean zooplankton community in a shallow, temperate lake (Lake Balaton, Hungary). Hydrobiologia 135: 131–147.CrossRefGoogle Scholar
  87. Zaret, T. M., 1980. Predation and freshwater communities. Yale Univ. Press, New Haven, 180 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Z. Maciej Gliwicz
    • 1
  1. 1.Department of HydrobiologyUniversity of WarsawWarsawPoland

Personalised recommendations