Theoretical analysis of non-invasive oscillometric maximum amplitude algorithm for estimating mean blood pressure

  • P. D. Baker
  • D. R. Westenskow
  • K. Kück
Communication

Abstract

A theoretical analysis is performed to evaluate the effect of arterial mechanical and blood pressure pulse properties on the accuracy of non-invasive oscillometric maximum amplitude algorithm (MAA) estimates of the mean blood pressure obtained using air-filled occlusive cuffs. Invasively recorded blood pressure pulses, selected for their varied shapes, are scaled to simulate a wide range of blood pulse pressures (diastolic blood pressure minus systolic blood pressure). Each scaled blood pressure pulse is transformed through an exponential model of an artery to create a series of blood volume pulses from which a simulated oscillometric waveform is created and the corresponding MAA estimate of the mean blood pressure and error (mean blood pressure minus MAA estimate) are determined. The MAA estimates are found to depend on the arterial blood pressure. The errors are found to depend on the arterial mechanical properties, blood pressure pulse shape and blood pulse pressure. These results suggest that there is no direct relationship between the mean blood presure and MAA estimate, and that multiple variables may affect the accuracy of MAA estimates of the mean blood pressure obtained using air-filled occlusive cuffs.

Keywords

Arterial compliance Arterial pressure-volume relationship Maximum amplitude algorithm Mean blood pressure Non-invasive blood pressure Occlusive cuff Oscillometric method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drzewiecki, G., Hood, R., andApple, H. (1994): ‘Theory of the oscillometric maximum and the systolic and diastolic detection ratios,’Ann. Biomed. Eng.,22, pp. 88–96CrossRefGoogle Scholar
  2. Epstein, R. H., Huffnagle, S., andBartkowski, R. R. (1991): ‘Comparative accuracies of a finger blood pressure monitor and an oscillometric blood pressure monitor,’J. Clin. Monit.,7, pp. 161–167CrossRefGoogle Scholar
  3. Forster, F. K., andTurney, D. (1986): ‘Oscillometric determination of diastolic, mean and systolic blood pressure—a numerical model,’J. Biomech. Eng.,108, pp. 359–364Google Scholar
  4. Gardner, R. M. (1986): ‘Hemodynamic monitoring: from catheter to display,’Acute Care,12, pp. 3–33.Google Scholar
  5. Geddes, L. A. (1970): ‘The direct and indirect measurement of blood pressure’ (Year Book Medical Publishers, Chicago)Google Scholar
  6. Geddes, L. A., Voelz, M., Combs, C., Reiner, D., andBabbs, C. F. (1982): ‘Characterization of the oscillometric method for measuring indirect blood pressure,’Ann. Biomed. Eng.,10, pp. 271–280CrossRefGoogle Scholar
  7. Gizdulich, P., andWesseling, K. H. (1988): ‘Forearm arterial pressure-volume relationships in man,’Clin. Phys. Physiol. Meas.,9, pp. 123–132CrossRefGoogle Scholar
  8. Gorback, M. S., Quill, T. J., andLavine, M. L. (1991): ‘The relative accuracies of two automated noninvasive arterial pressure measurement devices,’J. Clin. Monit.,7, pp. 13–22CrossRefGoogle Scholar
  9. Gravlee, G. P., andBrockschmidt, J. K. (1990): ‘Accuracy of four indirect methods of blood pressure measurement, with hemodynamic correlations,’J. Clin. Monit.,6, pp. 284–298CrossRefGoogle Scholar
  10. Hardy, H. H., andCollins, R. E. (1982): ‘On the pressure-volume relationship in circulatory elements,’Med. Biol. Eng. Comput.,20, pp. 565–570CrossRefGoogle Scholar
  11. Lemler, J., Kück, K., Haryadi, D. G., Baker, P. B., andWesternskow, D. R. (1996): ‘Variability of the blood pressure k “constant” in humans.Proceedings of the Annual Meeting of the Society for Technology in Anesthesia, San Diego, California, USAGoogle Scholar
  12. Link, W. T. (1975): ‘Apparatus and process for producing sphygmometric information.’ US Patent 3,903,872Google Scholar
  13. Link, W. T. (1986): ‘Method and apparatus for obtaining an individual’s systolic blood pressure.’ US Patent 4,564,020Google Scholar
  14. Link, W. T. (1987): ‘Techniques for obtaining information associated with an individual’s blood pressure including specifically a stat mode technique.’ US Patent 4,699,152Google Scholar
  15. Mauck, G. W., Smith, C. R., Geddes, L. A., andBourland, J. D. (1980): ‘The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure—Part II,’J. Biomech. Eng.,102, pp. 28–33CrossRefGoogle Scholar
  16. Ng, K.-G., andSmall, C. F. (1993): ‘Changes in oscillometric pulse amplitude envelope with cuff size: implications for blood pressure measurement criteria and cuff size selection,’J. Biomed. Eng.,15, pp. 279–282CrossRefGoogle Scholar
  17. Posey, J. A., Geddes, L. A., Williams, H., andMoore, A. G. (1969): ‘The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure: Part I,’Cardiovasc. Res. Center Bull.,8, pp. 15–25Google Scholar
  18. Ramsey, M. (1979): ‘Noninvasive automatic determination of mean arterial pressure,’Med. Biol. Eng. Comput.,17, pp. 11–18CrossRefGoogle Scholar
  19. Rutten, A. J., Ilsley, A. H., Skowronski, G. A., andRunciman, W. B. (1986): ‘A comparative study of the measurement of mean arterial blood pressure using, automatic oscillometers, arterial cannulation and auscultation,’Anaesth. Intens. Care,14, pp. 58–65Google Scholar
  20. Shimazu, H., Ito, H., Kobayashi, H., andYamakoshi, K. (1986): ‘Idea to measure diatolic arterial pressure by volume oscillometric method in human fingers,’Med. Biol. Eng. Comput.,24, pp. 549–554CrossRefGoogle Scholar
  21. Shimazu, H., Ito, H., Kawarada, A., Kobayashi, H., Hiraiwa, A., andYamakoshi, K. (1989): ‘Vibration technique for indirect measurement of diastolic arterial pressure in human fingers,’Med. Biol. Eng. Comput.,27, pp. 130–136CrossRefGoogle Scholar
  22. Sun, S. (1989): ‘New approaches to the noninvasive determination of arterial blood pressure and compliance profile.’ PhD dissertation, University of Utah, Salt Lake City, USAGoogle Scholar
  23. Ursino, M., andCristalli, C. (1996): ‘A mathematical study of some biomechanical factors affecting the oscillometric blood pressure measurement,’IEEE Trans. Biomed. Eng.,43, pp. 761–778CrossRefGoogle Scholar
  24. Vachtsevanos, G., Kalaitzakis, C., Papamarkos, N., Ziakas, G., Economou, K., andGemitzis, K. (1984): ‘Correlation study of arterial blood pressure level to the amplitude of the pressure pulse waveform,’J. Biomed. Eng.,6, pp. 33–39CrossRefGoogle Scholar
  25. Voelz, M. (1981): ‘Measurement of the blood-pressure constant k, over a pressure range in the canine radial artery,’Med. Biol. Eng. Comput.,19, pp. 535–537CrossRefGoogle Scholar
  26. Wesseling, K. H., Settels, J. J., andDe Wit, B. (1986): ‘The measurement of continuous finger arterial pressure noninvasively in stationary subjects’in Schmidt, T. H.et al. (Eds.): ‘Biological and psychological factors in cardiovascular disease’ (Springer-Verlag, Berlin, Heidelberg) pp. 355–375Google Scholar
  27. Yamakoshi, K., Shimazu, H., andTogawa, T. (1980): ‘Indirect measurement of instantaneous arterial blood pressure in the human finger by the vascular unloading technique,’IEEE Trans. Biomed. Eng.,27, pp. 150–155Google Scholar
  28. Yamakoshi, K., Shimazu, H., Shibata, M., andKamiya, A. (1982a): ‘New oscillometric method for indirect measurement of systolic and mean arterial pressure in the human finger. Part 1: model experiment,’Med. Biol. Eng. Comput.,20, pp. 307–313CrossRefGoogle Scholar
  29. Yamakoshi, K., Shimazu, H., Shibata, M. andKamiya, A. (1982b): ‘New oscillometric method for indirect measurement of systolic and mean arterial pressure in the human finger. Part 2: correlation study,’Med. Biol. Eng. Comput.,20, pp. 314–318CrossRefGoogle Scholar
  30. Yelderman, M., andReam, A. K. (1979): ‘Indirect measurement of mean blood pressure in the anesthetized patient,’Anesthesiology,50, pp. 253–256CrossRefGoogle Scholar

Copyright information

© IFMBE 1997

Authors and Affiliations

  • P. D. Baker
    • 1
  • D. R. Westenskow
    • 1
  • K. Kück
    • 1
  1. 1.Departments of Anesthisiology & BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations