Archives of Microbiology

, Volume 164, Issue 3, pp 165–172

Phylogenetic relationships ofThiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments

  • Gerard Muyzer
  • Andreas Teske
  • Carl O. Wirsen
  • Holger W. Jannasch
Original Paper

Abstract

Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments was used to explore the genetic diversity of hydrothermal vent microbial communities, specifically to determine the importance of sulfur-oxidizing bacteria therein. DGGE analysis of two different hydrothermal vent samples revealed one PCR band for one sample and three PCR bands for the other sample, which probably correspond to the dominant bacterial populations in these communities. Three of the four 16S rDNA fragments were sequenced. By comparison with 16S rRNA sequences of the Ribosomal Database Project, two of the DGGE-separated fragments were assigned to the genusThiomicrospira. To identify these ‘phylotypes’ in more detail, a phylogenetic framework was created by determining the nearly complete 16S rRNA gene sequence (approx. 1500 nucleotides) from three describedThiomicrospira species, viz.,Tms. crunogena, Tms. pelophila, Tms. denitrificans, and from a new isolate,Thiomicrospira sp. strain MA2-6. AllThiomicrospira species exceptTms. denitrificans formed a monophyletic group within the gamma subdivision of the Proteobacteria.Tms. denitrificans was assigned as a member of the epsilon subdivision and was distantly affiliated withThiovulum, another sulfur-oxidizing bacterium. Sequences of two dominant 16S rDNA fragments obtained by DGGE analysis fell into the gamma subdivisionThiomicrospira. The sequence of one fragment was in all comparable positions identical to the 16S rRNA sequence ofTms. crunogena. Identifying a dominant molecular isolate asTms. crunogena indicates that this species is a dominant community member of hydrothermal vent sites. Another ‘phylotype’ represented a newThiomicrospira species, phylogenetically in an intermediate position betweenTms. crunogena andTms. pelophila. The third ‘phylotype’ was identified as aDesulfovibrio, indicating that sulfate-reducing bacteria, as sources of sulfide, may complement sulfur- and sulfide-oxidizing bacteria ecologically in these sulfide-producing hydrothermal vents.

Key words

Thiomicrospira Hydrothermal vent microbial communities Ribosomal RNA Denaturing gradient gel electrophoresis Polymerase chain reaction Microbial diversity Colorless sulfur bacteria 16S rDNA Phylogenetic relationships 

Abbreviations

PCR

Polymerase chain reaction

DGGE

Denaturing gradient gel electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organisation and primary structure of a ribosomal RNA operon fromEscherichia coli. J Mol Biol 148:107–127PubMedCrossRefGoogle Scholar
  2. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube wormRiftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342CrossRefPubMedGoogle Scholar
  3. Distel DL, Wood AP (1992) Characterization of the gill symbiont ofThyasira flexuosa (Thyasiridae: Bivalvia) by use of polymerase chain reaction and 16S rRNA sequence analysis. J Bacteriol 174:6317–6320PubMedGoogle Scholar
  4. Distel DL, Felbeck H, Cavanaugh CM (1994) Evidence for phylogenetic congruence among sulfur-oxidizing chemoautotrophic bacterial endosymbionts and their bivalve hosts. J Mol Evol 38:533–542CrossRefGoogle Scholar
  5. Don RH, Cox PT, Wainwright B, Baker K, Mattick JS (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008PubMedGoogle Scholar
  6. Elsgaard L, Guezennec J, Benbouzid-Rollet N, Prieur D (1991) Fatty acid composition of sulfate-reducing bacteria isolated from deep-sea hydrothermal vents (13°N, East Pacific Rise). Kiel Meeresforsch Sonderh 8:182–187Google Scholar
  7. Evers S, Weizenegger M, Ludwig W, Schink B, Schleifer KH (1993) The phylogenetic positions ofPelobacter acetylenicus andPelobacter propionicus. Syst Appl Microbiol 16:216–218Google Scholar
  8. Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291–293CrossRefGoogle Scholar
  9. Felsenstein J (1989) Phylip—Phylogeny inference package. Cladistics 5:164–166Google Scholar
  10. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochromec sequences is of general applicability. Science 155:279–284PubMedCrossRefGoogle Scholar
  11. Garcia-Pichel F (1989) Rapid bacterial swimming measured in swarming cells ofThiovulum majus. J Bacteriol 171:3560–3563PubMedGoogle Scholar
  12. Gilbert DG (1992) SeqApp—a bio-sequence analysis application. Indiana University, BloomingtonGoogle Scholar
  13. Jannasch HW (1985) The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents. Proc R Soc Lond [Biol] 225:277–297CrossRefGoogle Scholar
  14. Jannasch HW, Wirsen CO, Nelson DC, Robertson LA (1985)Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J System Bacteriol 35:422–424Google Scholar
  15. Jukes TH, Cantor RR (1969) Evolution of protein molecules, In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132Google Scholar
  16. Kuenen JG, Veldkamp H (1972)Thiomicrospira pelophila nov. gen., nov. sp., a new obligately chemolithotrophic colorless sulfur bacterium. Antonie Van Leeuwenhoek 38:241–25PubMedCrossRefGoogle Scholar
  17. Kuenen JG, Robertson LA, Tuovinen OH (1991) The generaThiobacillus, Thiomicrospira, andThiosphaera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 2638–2657Google Scholar
  18. Lane DJ, Stahl DA, Olsen GJ, Heller DJ, Pace NR (1985) Phylogenetic analysis of the generaThiobacillus andThiomicrospira by 5S rRNA sequences. J Bacteriol 163:75–81PubMedGoogle Scholar
  19. Lane DJ, Harrison AP, Stahl DA, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J Bacteriol 174:269–278PubMedGoogle Scholar
  20. La Riviere JWM, Schmidt K (1991) Morphologically conspicuous sulfur-oxidizing eubacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn., Springer, Berlin Heidelberg New York, pp 3934–3947Google Scholar
  21. Larsen N, Olsen GJ, Maidanek BL, McCaughey MJ, Overbeek R, Macke TJ, Marsh TL, Woese CR (1993) The Ribosomal Data-base Project. Nucleic Acids Res 21:3021–3023PubMedGoogle Scholar
  22. Lessa EP, Applebaum G (1993) Screening techniques for detecting allelic variation in DNA sequences. Mol Ecol 2:119–129PubMedGoogle Scholar
  23. Liesack W, Stackebrandt E (1992) Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174:5072–5078PubMedGoogle Scholar
  24. Medlin L, Ellwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71:491–499PubMedCrossRefGoogle Scholar
  25. Moyer CL, Dobbs FC, Karl DM (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 60:871–879PubMedGoogle Scholar
  26. Moyer Cl, Dobbs FC, Karl DM (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 61:1555–1562PubMedGoogle Scholar
  27. Muyzer G, De Waal EC (1994) Determination of the genetic diversity of microbial communities using DGGE analysis of PCR-amplified 16S rDNA. In: Stal LJ, Caumette P (eds) Microbial mats, structure, development and environmental significance. NATO ASI Series G35, pp 207–214Google Scholar
  28. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700PubMedGoogle Scholar
  29. Muyzer G, Hottenträger S, Teske A, Wawer C (1995) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA. A new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, Van Elsas JD, De Bruijn FJ (eds) Molecular microbial ecology manual, 2nd edn. Kluwer, Dordrecht (in press)Google Scholar
  30. Olsen GJ, Woese CR, Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6PubMedGoogle Scholar
  31. Paster BJ, Dewhirst FE (1988) Phylogeny ofCampylobacter, Wolinella, Bacteroides gracilis, andBacteroides ureolyticus by 16S ribosomal nucleic acid sequencing. Int J Syst Bacteriol. 38:56–62Google Scholar
  32. Rochelle PA, Fry JC, Parkes RJ, Weightman AJ (1992) DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediments communities. FEMS Microbiol Lett 100:59–66CrossRefGoogle Scholar
  33. Ruby EG, Jannasch HW (1982) Physiological characteristics ofThiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165PubMedGoogle Scholar
  34. Ruby EG, Wirsen CO, Jannasch HW (1981) Chemolithothrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl Environ Microbiol 42:317–324PubMedGoogle Scholar
  35. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  37. Timmer-ten Hoor A (1975) A new type of thiosulphate oxidizing, nitrate-reducing microorganism:Thiomicrospira denitrificans sp. nov. Netherlands. J Sea Res 9:343–351Google Scholar
  38. Vandamme P, Falsen E, Rossau R, Hoste B, Segers P, Tytgat R, De Ley J (1991) Revision ofCampylobacter, Heliocobacter, andWolinella taxonomy: emendation of generic descriptions and proposal ofArcobacter gen. nov. Int J Syst Bacteriol 41:88–103PubMedCrossRefGoogle Scholar
  39. Ward DM, Bateson MM, Weller R, Ruff-Roberts AL (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. In: Marschall KC (ed) Advances in microbial ecology, vol 12. Plenum Press, New York, pp 219–286Google Scholar
  40. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  41. Wood AP, Kelly DP (1989) Isolation and physiological characterisation ofThiobacillus thyasiris sp. nov., a novel marine facultative autotroph and the putative symbiont ofThyasira flexuosa. Arch Microbiol 152:160–166CrossRefGoogle Scholar
  42. Wood AP, Kelly DP (1993) Reclassification ofThiobacillus thyasiris asThiomicrospira thyasirae comb. nov., an organism exhibiting pleomorphism in response to environmental conditions. Arch Microbiol 159:45–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Gerard Muyzer
    • 1
  • Andreas Teske
    • 1
  • Carl O. Wirsen
    • 2
  • Holger W. Jannasch
    • 2
  1. 1.Molecular Ecology UnitMax-Planck-Institute for Marine MicrobiologyBremenGermany
  2. 2.Department of BiologyWoods Hole Oceanographic InstitutionUSA

Personalised recommendations