Archives of Microbiology

, Volume 164, Issue 4, pp 294–300 | Cite as

The potential for diazotrophy in iron-and sulfur-oxidizing acidophilic bacteria

  • Paul R. Norris
  • J. Colin Murrell
  • Deborah HinsonEmail author
Original Paper


Acetylene reduction was observed with ferrousiron-oxidizingThiobacillus ferrooxidans, as expected from previous studies with this bacterium. Acetylene reduction was also found during the growth ofT. ferrooxidans on tetrathionate. OnlyLeptospirillum ferrooxidans, one of several other phylogenetically diverse, ferrous-iron-and/or sulfur-oxidizing acidophilic microorganisms, also reduced acetylene. A reduction of the oxygen concentration in the culture atmosphere was necessary to alleviate inhibition of nitrogenase activity. DNA sequences homologous tonif structural genes were found in both organisms. Diazotrophic growth ofL. ferrooxidans was inferred from an increase in iron oxidation in ammonium-free medium when the oxygen concentration was limited and from apparent inhibition by acetylene under these conditions.

Key words

Acetylene redution Nitrogen fixation Leptospirillum ferrooxidans Thiobacillus ferrooxidans 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balashova VV, Vedinina I YA, Markosyan GE, Zavarzin GA (1974) The autotrophic growth ofLeptospirillum ferrooxidans. Microbiology 43:491–494Google Scholar
  2. Belay N, Sparling R, Daniels L (1984) Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312:286–288PubMedCrossRefGoogle Scholar
  3. Bogdahn M, Kleiner D (1986) N2 fixation and NH4 + assimilation in the thermophilic anaerobesClostridium thermosaccharolyticum andClostridium thermoautotrophicum. Arch Microbiol 144:102–104PubMedCrossRefGoogle Scholar
  4. Brouzes R, Knowles R (1971) Inhibition ofClostridium pasteurianum by acetylene: implication for nitrogen fixation assay. Can J Microbiol 17:1483–1489PubMedCrossRefGoogle Scholar
  5. Cannon FC, Riedel GE, Ausubel FM (1979) Overlapping sequences ofKlebsiella pneumoniae nif DNA cloned and characterized. Mol Gen Genet 174:59–66PubMedCrossRefGoogle Scholar
  6. Dalton H (1980) Chemoautotrophic nitrogen fixation. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic Press, London, pp 177–195Google Scholar
  7. Eccleston M, Kelly DP, Wood AP (1985) Autotrophic growth and iron oxidation and inhibition kinetics ofLeptospirillum ferrooxidans. In: Caldwell DE, Brierley JA, Brierley CL (eds) Planetary ecology. Van Nostrand, New York, pp 263–272Google Scholar
  8. Hallberg KB, Lindström EB (1994) Characterization ofThiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140:3451–3456PubMedCrossRefGoogle Scholar
  9. Harrison AP Jr (1982) Genomic and physiological diversity amongst strains ofThiobacillus ferrooxidans and genomic comparison withThiobacillus thiooxidans. Arch Microbiol 131:68–76CrossRefGoogle Scholar
  10. Holden PJ (1991) Identification of structuralnif genes in an ironoxidising moderate thermophile, FEMS Microbiol Lett 83: 7–10CrossRefGoogle Scholar
  11. Huber G, Stetter KO (1991)Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Arch Microbiol 14:372–378Google Scholar
  12. Karavaiko GI, Golovacheva RS, Pivovarova TA, Tzaplina IA, Vartanjan NS (1988) Thermophilic bacteria of the genusSulfolobus. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. Proceedings of the international symposium. Science and Technology Letters, Kew, pp 29–41Google Scholar
  13. Kelly DP, Jones CA (1978) Factors affecting metabolism and ferrous iron oxidation in suspensions and batch cultures ofThiobacillus ferrooxidans: relevance to ferric iron leach solution regeneration. In: Murr LE, Torma AE, Brierley JA (eds) Metallurgical applications and related microbiological phenomena. Academic Press, New York, pp 19–44Google Scholar
  14. Lane DJ, Harrison AP Jr, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfurand iron-oxidizing eubacteria. J Bacteriol 174:269–278PubMedGoogle Scholar
  15. Mackintosh ME (1978) Nitrogen fixation byThiobacillus ferrooxidans. J Gen Microbiol 105:215–218Google Scholar
  16. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  17. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  18. Marsh RM, Norris PR (1983) The isolation of some thermophilic, autotrophic, iron-and sulphur-oxidizing bacteria. FEMS Microbiol Lett 17:311–315CrossRefGoogle Scholar
  19. Murrell JC, Dalton H (1983) Nitrogen fixation in obligate methanotrophs. J Gen Microbiol 129:3481–3486Google Scholar
  20. Nixon A, Norris PR (1992) Autotrophic growth and inorganic sulphur compound oxidation bySulfolobus sp. in chemostat culture. Arch Microbiol 157:155–160Google Scholar
  21. Norris PR (1983) Iron and mineral oxidation withLeptospirillum-like bacteria. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, pp 83–96Google Scholar
  22. Norris PR (1990) Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 3–27Google Scholar
  23. Norris PR, Barr DW (1985) Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiol Lett 28: 221–224CrossRefGoogle Scholar
  24. Norris PR, Marsh RM, Lindström EB (1986) Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate. Biotechnol Appl Biochem 8:318–329Google Scholar
  25. Oakley CJ, Murrell JC (1988)nifH genes in the obligate methaneoxidizing bacteria. FEMS Microbiol Lett 49:53–57CrossRefGoogle Scholar
  26. Possot O, Henry M, Sibold L (1986) Distribution of DNA sequences homologous tonifH among archaebacteria, FEMS Microbiol Lett 34:173–177CrossRefGoogle Scholar
  27. Pretorius IM, Rawlings DE, Woods DR (1986) Identification and cloning ofThiobacillus ferrooxidans structuralnif genes inEscherichia coli. Gene 45:59–65PubMedCrossRefGoogle Scholar
  28. Pretorius IM, Rawlings DE, O’Neill EG, Jones WA, Kirby R, Woods DR (1987) Nucleotide sequence of the gene encoding the nitrogenase iron protein ofThiobacillus ferrooxidans. J Bacteriol 169:367–370PubMedGoogle Scholar
  29. Rawlings DE (1988) Sequence and structural analysis of the α-and β-dinitrogenase subunits ofThiobacillus ferrooxidans. Gene 69:337–343PubMedCrossRefGoogle Scholar
  30. Rawlings DE, Kusano T (1994) Molecular genetics ofThiobacillus ferrooxidans. Microbiol Rev 58:39–55PubMedGoogle Scholar
  31. Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation ofLeptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58:85–92PubMedGoogle Scholar
  32. Stevens CJ, Dugan PR, Tuovinen OH (1986) Acetylene reduction (nitrogen fixation) byThiobacillus ferrooxidans. Biotechnol Appl Biochem 8:351–359Google Scholar
  33. Stevens CJ, Tsai YL, Tuovinen OH (1988) Assimilation of ammonium inThiobacillus ferrooxidans (abstract). American Society for Microbiology, Washington, DC, p 197Google Scholar
  34. Thomsen JK, Cox RP (1993) Upper temperature limits for growth and diazotrophy in the thermophilic cyanobacterium HTFChlorogloeopsis. Arch Microbiol 159:423–427CrossRefGoogle Scholar
  35. Tuovinen OH, Panda FA, Tsuchiya HM (1979) Nitrogen requirement of iron-oxidizing thiobacilli for acidic ferric sulfate regeneration. Appl Environ Microbiol 37:954–958PubMedGoogle Scholar
  36. Wahlund TM, Madigan MT (1993) Nitrogen fixation by the thermophilic green sulfur bacteriumChlorobium tepidum. J Bacteriol 175:474–478PubMedGoogle Scholar
  37. Wood AP, Kelly DP (1985) Autotrophic and mixotrophic growth and metabolism of some moderately thermoacidophilic ironoxidizing bacteria. In: Caldwell DE, Brierley JA, Brierley CL (eds) Planetary ecology. Van Nostrand, New York, pp 251–262Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Paul R. Norris
    • 1
  • J. Colin Murrell
    • 1
  • Deborah Hinson
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations