Archives of Microbiology

, Volume 164, Issue 4, pp 255–264 | Cite as

Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment

  • Robert Huber
  • Josef Stöhr
  • Sabine Hohenhaus
  • Reinhard Rachel
  • Siegfried Burggraf
  • Holger W. Jannasch
  • Karl O. Stetter
Original Paper

Abstract

From a hydrothermal vent site off the Mexican west coast (20°50′N, 109°06′W) at a depth of 2,600 m, a novel, hyperthermophilic, anaerobic archaeum was isolated. Cells were round to slightly irregular cocci, 1.2–2.5 μm in diameter and were motile by means of a tuft of flagella. The new isolate grew between 60 and 93°C (optimum: 85°C), from pH 3.5 to 9 (optimum: pH 6.7), and from 0.8 to 8% NaCl (optimum: 2%). The isolate was an obligate organotroph, using chitin, yeast extract, meat extract, and peptone for growth. Chitin was fermented to H2, CO2, NH3, acetate, and formate. H2S was formed in the presence of sulfur. The chitinoclastic enzyme system was oxygen-stable, cell-associated, and inducible by chitin. The cell wall was composed of a surface layer of hexameric protein complexes arranged on a p6 lattice. The core lipids consisted of glycerol diphytanyl diethers and acyclic and cyclic glycerol diphytanyl tetraethers. The G+C content was 46.5 mol%. DNA/DNA hybridization and 16S rRNA sequencing indicated that the new isolate belongs to the genusThermococcus, representing a new species,Thermococcus chitonophagus. The type strain is isoalte GC74, DSM 10152.

Key words

Thermococcus Archaea Hyperthermophile Deep-sea hydrothermal vent Chitin Rijtia pachyptila 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams MWW (1993) Enzymes and proteins from organisms that grow near and above 100°C. Annu Rev Microbiol 47:627–658PubMedGoogle Scholar
  2. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth ofMethanobacterium ruminatium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791PubMedGoogle Scholar
  3. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedGoogle Scholar
  4. Bassler BL, Yu C, Lee YC, Roseman S (1991) Chitin utilization by marine bacteria: degradation and catabolism of chitin oligosaccharides byVibrio furnissii. J Biol Chem 266:24276–24286PubMedGoogle Scholar
  5. Baumeister W, Wildhaber J, Phipps BM (1989) Principles of organization in eubacterial and archaebacterial surface proteins, Can J Microbiol 35:215–227PubMedGoogle Scholar
  6. Belkin S, Jannasch HW (1985) A new extremely thermophilic sulfur-reducing heterotrophic, marine bacterium. Arch Microbiol 141:181–186CrossRefGoogle Scholar
  7. Blöchl E, Burggraf S, Fiala G, Lauerer G, Huber G, Huber R, Rachel R, Segerer A, Stetter KO, Völkl P (1994) Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J Microbiol Biotechnol 11:1–8Google Scholar
  8. Boyer JN (1986) End products of anaerobic chitin degradation by salt marsh bacteria as substrates for dissimilatory sulfate reduction and methanogenesis. Appl Environ Microbiol 52:1415–1418PubMedGoogle Scholar
  9. Boyer JN (1994) Aerobic and anaerobic degradation and mineralization of14C-chitin by water column and sediment inocula of the York river estuary, Virginia. Appl Environ Microbiol 60: 174–179PubMedGoogle Scholar
  10. Brenner DJ (1973) Desoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int J Syst Bact 22:298–307Google Scholar
  11. Brown SH, Kelly RM (1993) Characterization of amylolytic enzymes, having both α-1,4 and α-1,6 hydrolytic activity, from the thermophilic archaeaPyrococcus furiosus andThermococcus litoralis. Appl Environ Microbiol 59:2614–2621PubMedGoogle Scholar
  12. Cabib E (1987) The synthesis and degradation of chitin. Adv Enzymol 59:59–101PubMedGoogle Scholar
  13. Cavanaugh CM (1983) Symbiotic chemotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature 371:58–61CrossRefGoogle Scholar
  14. Davis B, Eveleigh DE (1984) Chitosanases: occurrence, production and immobilization. In: Zikakis JP (ed) Chitin, chitosan and related enzymes. Academic Press, Orlando, pp 161–179Google Scholar
  15. Dworkin M, Reichenbach H (1981) The order Cytophagales (with addenda on the generaHerpetosiphon, Saprospira andFlexitrix). In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 374–376Google Scholar
  16. Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR, Prieur D (1993)Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349CrossRefGoogle Scholar
  17. Fiala G, Stetter KO (1986)Pyrococcus furiosus, sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61CrossRefGoogle Scholar
  18. Gage JD, Tyler PA (1991) Deep-sea hydrothermal vents and cold seeps. In: Gage JD, Tyler PA (eds) Deep-sea biology: a natural history of organisms at deep-sea floor. Cambridge University Press, Cambridge, pp 363–391Google Scholar
  19. Gaill F, Hunt S (1986) Tubes of the deep-sea hydrothermal vent wormsRiftia pachyptila (Vestimentifera) andAlvinella pompejana (Annelida). Marit Ecol Program Ser 34:267–274Google Scholar
  20. Gooday GW (1990) Physiology of microbial degradation of chitin and chitosan. Biodegradation 1:177–190CrossRefGoogle Scholar
  21. Gooday GW (1994) Physiology of microbial degradation of chitin and chitosan. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 279–312Google Scholar
  22. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986)Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333CrossRefGoogle Scholar
  23. Huber R, Woese CR, Langworthy TA, Kristjansson JK, Stetter KO (1990)Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154:105–111CrossRefGoogle Scholar
  24. Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992)Aquifex pyrophilus gen. nov., sp. no., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351Google Scholar
  25. Huber H, Huber R, Lüdemann HD, Stetter KO (1994) Search for hyperthermophilic microorganisms in fluids obtained from the KTB pump test, Scientific Drill 4:127–129Google Scholar
  26. Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA (1992) Comparative physiological studies on hyperthermophilic archea isolated from deep-sea hot vents with emphasis onPyrococcus strain GB-D. Appl Environ Microbiol 58:3472–3481PubMedGoogle Scholar
  27. Jones ML (1980)Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galápagos rift geothermal vents (Pogonophora). Proc Biol Soc Wash 93:1295–1313Google Scholar
  28. Jukes TH, Cantor GR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132Google Scholar
  29. Kengen SWM, Stams AJM (1994) Formation of 1-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeonPyrococcus furiosus. Arch Microbiol 161:168–175Google Scholar
  30. Kobayaschi T, Kwak YS, Akiba T, Kudo T, Horikoshi K (1994)Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent, Syst Appl Microbiol 17:232–236Google Scholar
  31. Koch R, Spreinat A, Lemke K, Antranikian G (1991) Purification and properties of a hyperthermoactive α-amylase from the archaeobacteriumPyrococcus furiosus. Arch Microbiol 155: 572–578CrossRefGoogle Scholar
  32. Larsen N, Olsen GJ, Maidak BL, McCaughey MJ, Overbeck R, Macke TJ, Marsh TL, Woese CR (1993) The ribosomal database project. Nucleic Acids Res 21:3021–3023PubMedGoogle Scholar
  33. Lauerer G, Kristjansson JK, Langworthy TA, König H, Stetter KO (1986)Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst Appl Microbiol 8:100–105Google Scholar
  34. Ledl F, Schleicher E (1990) Die Maillard-Reaktion in Lebensmitteln und im menschlichen Körper—neue Ergebnisse zur Chemie, Biochemie und Medizin. Angew Chem 102:597–626Google Scholar
  35. Leuschner C, Antranikian G (1994) Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World J Microbiol Biotechnol 11:95–114CrossRefGoogle Scholar
  36. Liaw HJ, Mah RA (1992) Isolation and characterization ofHaloanaerobacter chitinovorans gen nov., sp. nov., a halophilic, anaerobic, chitinolytic bacterium from solar saltern. Appl Environ Microbiol 58:260–266PubMedGoogle Scholar
  37. Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res 24:857–863CrossRefGoogle Scholar
  38. Lutz RA, Shank TM, Fornari DJ, Haymon RM, Lilley MD, Von Damm KL, Debruyers D (1994) Rapid growth at deep-sea vents. Nature 371:663–664CrossRefGoogle Scholar
  39. Marmur J (1961) A procedure for the isolation of desoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  40. Marmur J, Doty P (1962) Determination of the base composition of desoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118PubMedCrossRefGoogle Scholar
  41. Meyer SA, Schleifer KH (1978) Desoxyribonucleic acid reassociation in the classification of coagulase-positive Staphylococci. Arch Microbiol 117:183–188PubMedCrossRefGoogle Scholar
  42. Miroshnichenko ML, Bonch-Osmolovskaya EA, Neuner A, Kostrikina NA, Chernych NA, Alekseev VA (1989)Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Micribiol 12:257–262Google Scholar
  43. Neuner A (1990) Isolierung, Charakterisierung und taxonomische Einordnung coccoider mariner hyperthermophiler Archaebakterien. PhD thesis, University of Regensburg, GermanyGoogle Scholar
  44. Neuner A, Jannasch HW, Belkin S, Stetter KO (1990)Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207CrossRefGoogle Scholar
  45. Pel R, Gottschal JC (1986) Mesophilic chitin-degrading anaerobes isolated from an estuarine environment. FEMS Microbiol Ecol 38:39–49CrossRefGoogle Scholar
  46. Pel R, Gottschal JC (1987) The effect of oxygen and sulfhydryl reagents on the hydrolysis and fermentation of chitin byClostridium 9.1. FEMS Microbiol Lett 44:59–62CrossRefGoogle Scholar
  47. Pel R, Hessels G, Aalfs H, Gottschal JC (1989) Chitin degradation byClostridium sp. strain 9.1 in mixed cultures with saccharolytic and sulfate-reducing bacteria. FEMS Microbiol Ecol 62:191–200CrossRefGoogle Scholar
  48. Rogers HJ (1961) The dissimilation of high molecular weight substances. In: Gunsalus IC, Stanier RY (eds) The bacteria. Academic Press. New York, pp 257–318Google Scholar
  49. Saiki RK, Scharf SJ, Fallona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of b-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 230:1350–1354PubMedCrossRefGoogle Scholar
  50. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  51. Schleifer KH, Stackebrandt E (1983) Molecular systematics of prokaryotes. Annu Rev Microbiol. 37:134–187CrossRefGoogle Scholar
  52. Simoneit BRT, Londsdale PF (1982) Hydrothermal petroleum in mineralized mounds at the seabed at Guaymas Basin. Nature 295:198–202CrossRefGoogle Scholar
  53. Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300:258–260CrossRefGoogle Scholar
  54. Stetter KO (1994) The lesson of archaebacteria. In: Bengtson S (ed) Nobel symposium no. 84. Columbia University Press, New York, pp 143–151Google Scholar
  55. Stetter KO, König H, Stackebrandt E (1983)Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur-reducing archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4:535–551Google Scholar
  56. Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyper-thermophilic microorganisms. FEMS Microbiol Rev 75:117–124CrossRefGoogle Scholar
  57. Takayanagi T, Alisaka K, Takiguchi Y, Shimahara K (1991) Isolation and characterization of thermostable chitinases fromBacillus licheniformis X-7u. Biochim Biophys Acta 1078:404–410PubMedGoogle Scholar
  58. Timmes K, Hobbs G, Berkley RCW (1974) Chitinolytic clostridia isolated from marine mud. Can J Microbiol 20:1284–1285CrossRefGoogle Scholar
  59. Tracey MV (1957) Chitin. Rev Pure Appl Chem 7:1–14Google Scholar
  60. Trincone A, Lanzotti V, Nicolaus B, Zillig W, De Rosa M, Gambacorta A (1989) Comparative lipid composition of aerobically and anaerobically grownDesulfurolobus ambivalens, an autotrophic thermophilic archaeon. J Gen Microbiol 135:2751–2757Google Scholar
  61. Tsujibo H, Minoura K, Miyamoto K, Endo H, Moriwaki M, Inamori Y (1993) Purification and properties of a thermostable chitinase fromStreptomyces thermoviolaceus OPC-520, Appl Environ Microbiol 59:620–622PubMedGoogle Scholar
  62. Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993)Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926PubMedGoogle Scholar
  63. Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence TG, Van Etten J, Maniloff J, Woese CR (1989) A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467PubMedGoogle Scholar
  64. Wheelis ML, Kandler O, Woese CR (1992) On the nature of global classification. Proc Natl Acad Sci USA 89:2930–2934PubMedCrossRefGoogle Scholar
  65. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eukarya. Proc Natl Acad Sci USA 87:4576–4579PubMedCrossRefGoogle Scholar
  66. Yang D, oyaizu Y, Oyaizu H, Olson GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447PubMedCrossRefGoogle Scholar
  67. Yu CH, Lee AM, Bassler BL, Roseman S (1991) Chitin utilization by marine bacteria: a physiological function for bacterial adhesion to immobilized carbohydrates. J Biol Chem 266:24260–24267PubMedGoogle Scholar
  68. Zillig W, Holz I, Janekovic D, Schäfer W, Reiter WD (1983) The archaebacteriumThermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria, Syst Appl Microbiol 4:88–94Google Scholar
  69. Zillig W, Holz I, Klenk HP, Trent J, Wunderl S, Janekovic D, Imsel E, Haas B (1987)Pyrococcus woesei, sp. nov., an ultrathermophilic archaebacterium, representing a novel order, Thermococcales. Syst Appl Microbiol 9:62–70Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Robert Huber
    • 1
  • Josef Stöhr
    • 1
  • Sabine Hohenhaus
    • 1
  • Reinhard Rachel
    • 1
  • Siegfried Burggraf
    • 1
  • Holger W. Jannasch
    • 2
  • Karl O. Stetter
    • 1
  1. 1.Lehrstuhl für Mikrobiologie and ArchaeenzentrumUniversität RegensburgRegensburgGermany
  2. 2.Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations