, Volume 31, Issue 3, pp 305–311 | Cite as

Long-chain polyunsaturated fatty acids in plasma lipids of obese children

  • Tamás Decsi
  • Dénes Molnár
  • Berthold Koletzko


Fatty acid composition of plasma phospholipids (PL), triglycerides (TG), and sterol esters (STE) was determined by high-resolution capillary gas-liquid chromatography in 22 obese children (age: 13.7±1.4 y, body weight relative to normal weight for height: 170±24%, mean ±SD) and compared with data obtained in 25 age-matched healthy controls. There were no differences in the levels of linoleic acid (LA, C18∶2n-6) in any of the plasma fractions from the obese children and the controls. Obese children exhibited significantly higher values of arachidonic acid (AA, C20∶4n-6) than controls both in PL (12.6 [2.4] vs. 8.3 [1.4], % wt/wt, [median (interquartile range)],P<0.001) and STE (7.3 [1.8] vs. 6.0 [1.1],P<0.05). Similarly, obese children showed higher values than controls for dihomo-γ-linolenic acid (DHGLA, C20∶3n-6) in PL (4.0 [0.5] vs. 3.0 [0.6],P<0.001), TG (0.4 [0.1] vs. 0.2 [0.1],P<0.001), and STE (0.9 [0.1] vs. 0.7 [0.1],P<0.01), and for γ-linolenic acid (C18∶3n-6) in STE (1.1 [0.2] vs. 0.8 [0.2],P<0.001). The AA/LA ratios were higher in obese children than in controls in PL (0.68 [0.16] vs. 0.42 [0.09],P<0.0005) and STE (0.16 [0.04] vs. 0.12 [0.02],P<0.05), whereas the AA/DHGLA ratios were lower in TG of obese children than in controls (3.40 [0.64] vs. 5.10 [1.75],P<0.005). Plasma glucose concentrations were inversely related to AA in TG (r=0.53,P<0.05), and plasma TG concentrations were inversely related to AA in PL and STE (r=−0.49,P<0.05 andr=−0.48,P<0.05) and to the AA/DHGLA ratios in PL (r=−0.57,P<0.01),TG (r=−0.56,P<0.01) and STE (r=−0.56,P<0.01). We conclude that the significantly higher values of n-6 long-chain polyunsaturated fatty acids (LCP) in plasma lipids of obese children than in age-matched controls may be caused by an enhanced activity of Δ6-desaturation, and we speculate that elevated fasting immunoreactive insulin seen in obese children (19.4±8.0 μU/mL) may stimulate synthesis of n-6 LCP fatty acids.



arachidonic acid


dihomo-γ-linolenic acid


essential fatty acid


γ-linolenic acid


linoleic acid


immunoreactive insulin


long-chain polyunsaturated fatty acid




polyunsaturated fatty acids


sterol ester




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rössner, S., Walldius, G., and Björvell, H. (1989) Fatty Acid Composition in Serum Lipids and Adipose Tissue in Severe Obesity Before and After Six Weeks of Weight Loss,Int. J. Obesity 13, 603–612.Google Scholar
  2. 2.
    Gray, D.S., Takahashi, M., Bauer, M., and Bray, G.A. (1991) Changes in Individual Plasma Free Fatty Acids in Obese Females During Fasting and Refeeding,Int. J. Obesity 15, 163–168.Google Scholar
  3. 3.
    Phinney, S.D., Davis, P.G., Johnson, S.B., and Holman, R.T. (1991) Obesity and Weight Loss Alter Serum Polyunsaturated Lipids in Humans,Am. J. Clin. Nutr. 53, 831–838.PubMedGoogle Scholar
  4. 4.
    Christophe, A., and Vermeulen, A. (1992) Effects of Weight Loss on the Fatty Acid Composition of Serum Lipids in Obese Women,Ann. Nutr. Metab. 36, 336–342.PubMedGoogle Scholar
  5. 5.
    Koletzko, B., and Braun, M. (1991) Arachidonic Acid and Early Human Growth: Is There a Relation?,Ann. Nutr. Metab. 35, 128–131.PubMedGoogle Scholar
  6. 6.
    Leaf, A.A., Leighfield, M.J., Costeloe, K.L., and Crawford, M.A. (1992) Long Chain Polyunsaturated Fatty Acids and Fetal Growth,Early Hum. Dev. 30, 183–191.CrossRefPubMedGoogle Scholar
  7. 7.
    Carlson, S.E., Werkman, S.H., Peeples, J.M., Cooke, R.J., and Tolley, E.A. (1993) Arachidonic Acid Status Correlates with First Year Growth in Preterm Infants,Proc. Natl. Acad. Sci. USA 90, 1073–1077.CrossRefPubMedGoogle Scholar
  8. 8.
    Guesnet, P., Bourre, J.-M., Guerre-Millo, M., Pascal, G., and Durand, G. (1990) Tissue Phospholipid Fatty Acid Composition in Genetically Lean (fa/-) or Obese (fa/fa) Zucker Female Rats on the Same Diets,Lipids 25, 517–522.CrossRefPubMedGoogle Scholar
  9. 9.
    Cunnane, S.C., Manku, M.S., and Horrobin, D.F. (1985) Essential Fatty Acids in the Liver and Adipose Tissue of Genetically Obese Mice: Effect of Supplemental Linoleic and Gamma-Linolenic Acids,Brit. J. Nutr. 53, 441–448.CrossRefPubMedGoogle Scholar
  10. 10.
    Parizková, J., and Roth, Z. (1972) Assessment of Depot Fat in Children from Skinfold Measurements by Holtain Caliper,Hum. Biol. 44, 613–616.PubMedGoogle Scholar
  11. 11.
    Moore, D.J., Durie, P.R., Forstner, G.G., and Pencharz, P.B. (1985) The Assessment of Nutritional Status in Children,Nutr. Res. 5, 797–799.CrossRefGoogle Scholar
  12. 12.
    Tanner, J.M. (1962)Growth at Adolescence, 2nd edn., Blackwell Scientific Publications, Oxford.Google Scholar
  13. 13.
    Braham, D., and Tinder, P. (1972) An Improved Reagent for the Determination of Blood Glucose by the Oxidase System,Analyst 97, 142–146.CrossRefGoogle Scholar
  14. 14.
    Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues,J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  15. 15.
    Koletzko, B., Schmidt, E., Bremer, H.J., Haug, M., and Harzer, G. (1989) Effects of Dietary Long-Chain Polyunsaturated Fatty Acids on the Essential Fatty Acid Status of Premature Infants,Eur. J. Pediatr. 148, 669–675.CrossRefPubMedGoogle Scholar
  16. 16.
    Stoffel, W., Chu, F., and Ahrens, E.H. (1959) Analysis of Long-Chain Fatty Acids by Gas-Liquid Chromatography,Anal. Chem. 31, 307–308.CrossRefGoogle Scholar
  17. 17.
    Decsi, T., and Koletzko, B. (1994) Fatty Acid Composition of Plasma Lipid Classes in Healthy Subjects from Birth to Young Adulthood,Eur. J. Pediatr. 153, 520–525.CrossRefPubMedGoogle Scholar
  18. 18.
    Ryan, B.F., Joiner, B.L., and Ryan, T.A. (1985)Minitab Handbook, 2nd edn., PWS-Kent, Boston.Google Scholar
  19. 19.
    Phinney, S.D., Odin, R.S., Johnson, S.B., and Holman, R.T. (1990) Reduced Arachidonate in Serum Phospholipids and Cholesteryl Esters Associated with Vegetarian Diets in Humans,Am. J. Clin. Nutr. 51, 385–392.PubMedGoogle Scholar
  20. 20.
    Molnár, D., Dóber, I., and Györkő, B. (1985) Energy and Food Intake in Obese Children (in Hungarian with English summary),Gyermekgyógy 36, 501–505.Google Scholar
  21. 21.
    Nordoy, A., and Dyerberg, J. (1989) n-3 Fatty Acids in Health and Disease,J. Intern. Med. 225, Suppl. 1, 1–3.Google Scholar
  22. 22.
    Brenner, R.R. (1981) Nutritional and Hormonal Factors Influencing Desaturation of Essential Fatty Acids,Prog. Lipid Res. 20, 41–47.CrossRefPubMedGoogle Scholar
  23. 23.
    Brenner, R.R. (1991) Endocrine Control of Fatty Acid Desaturation,Biochem. Soc. Trans. 18, 773–775.Google Scholar
  24. 24.
    Brenner, R.R. (1977) Regulatory Function of Delta-6-Desaturase—Key Enzyme of Polyunsaturated Fatty Acids Synthesis,Adv. Exp. Med. Biol. 83, 85–101.CrossRefPubMedGoogle Scholar
  25. 25.
    De Tomas, M.E., Mercuri, O., and Rodrigo, A. (1980) Effects of Dietary Protein and EFA Deficiency on Liver Delta-5, Delta-6 and Delta-9 Desaturase Activities in the Early Developing Rat,J. Nutr. 110, 595–599.PubMedGoogle Scholar
  26. 26.
    Holman, R.T., Johnson, S.B., Mercuri, O., Itarte, H.J., Rodrigo, M.A., and De Tomas, M.E. (1981) Essential Fatty Acid Deficiency in Malnourished Children,Am. J. Clin. Nutr. 34, 1534–1539.PubMedGoogle Scholar
  27. 27.
    Wolff, J.A., Margolis, S., Buidoso-Wolff, K., Matusick, E., and MacLean, W.C. (1984) Plasma and Red Blood Cell Fatty Acid Composition in Children with Protein-Calorie Malnutrition,Pediatr. Res. 18, 162–167.PubMedGoogle Scholar
  28. 28.
    Koletzko, B., Abiodun, P.O., Laryea, M.D., and Bremer, H.J. (1986) Fatty Acid Composition of Plasma Lipids in Nigerian Children with Protein-Energy Malnutrition,Eur. J. Pediatr. 145, 109–115.CrossRefPubMedGoogle Scholar
  29. 29.
    Mercuri, O., Peluffo, R.O., and Brenner, R.R. (1967) Effect of Insulin on the Oxidative Desaturation of Alpha-Linolenic, Oleic and Palmitic Acids,Lipids 2, 284–285.CrossRefPubMedGoogle Scholar
  30. 30.
    Holman, R.T., Johnson, S.B., Gerrard, J.M., Mauer, S.M., Kupcho-Sandberg, S., and Brown, D.M. (1983) Arachidonic Acid Deficiency in Streptozocin-Induced Diabetes,Proc. Natl. Acad. Sci. USA 80, 2375–2379.CrossRefPubMedGoogle Scholar
  31. 31.
    Huang, Y.-S., Horrobin, D.F., Manku, M.S., Mitchell, J., and Ryan, M.A. (1984) Tissue Phospholipid Fatty Acid Composition in the Diabetic Rat,Lipids 19, 367–370.CrossRefPubMedGoogle Scholar
  32. 32.
    Spanheimer, R.G., Bar, R.S., and Roth, J. (1982) The Radioreceptor Assay, inDiabetes Mellitus and Obesity (Brodoff, B.N., and Bleecher, S.J., eds.) pp. 242–249, Williams and Wilkins, Baltimore.Google Scholar
  33. 33.
    Molnár, D. (1990) Insulin Secretion and Carbohydrate Tolerance in Childhood Obesity,Klin. Pädiatr. 202, 131–135.PubMedCrossRefGoogle Scholar
  34. 34.
    Howard, B.V., Klimes, I., Vasquez, B., Brady, D., Nagulesparan, M., and Unger, R.H. (1984) The Antilipolytic Action of Insulin in Obese Subjects with Resistance to Its Glucoregulatory Action,J. Clin. Endocrinol. Metab. 58, 544–548.PubMedCrossRefGoogle Scholar
  35. 35.
    Pelikánová, T., Kohout, M., Válek, J., Base, J., and Kazdová, L. (1989) Insulin Secretion and Insulin Action Related to the Serum Phospholipid Fatty Acid Pattern in Healthy Men,Metabolism 38, 188–192.CrossRefPubMedGoogle Scholar
  36. 36.
    Borkman, M., Storlien, L.H., Pan, D.A., Jenkins, A.B., Chisholm, D.J., and Campbell, L.V. (1993) The Relation Between Insulin Sensitivity and Fatty-Acid Composition of Skeletal-Muscle Phospholipids,N. Engl. J. Med. 328, 238–244.CrossRefPubMedGoogle Scholar
  37. 37.
    Cunnane, S.C., Huang, Y.-S., and Manku, M.S. (1985) Triaglycerol Content of Arachidonic Acid Varies Inversely with Total Triacylglycerol in Liver and Plasma,Biochim. Biophys. Acta 876, 183–186.Google Scholar

Copyright information

© American Oil Chemists’ Society 1996

Authors and Affiliations

  • Tamás Decsi
    • 1
  • Dénes Molnár
    • 1
  • Berthold Koletzko
    • 2
  1. 1.Department of PaediatricsUniversity Medical School of PécsPécsHungary
  2. 2.Kinderpoliklinik der Ludwig-Maximilians-UniversitätMunichGermany

Personalised recommendations