Advertisement

Archives of Microbiology

, Volume 164, Issue 6, pp 390–395 | Cite as

Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH

  • Martin Keller
  • Franz-Josef Braun
  • Reinhard Dirmeier
  • Doris Hafenbradl
  • Siegfried Burggraf
  • Reinhard Rachel
  • Karl O. Stetter
Original Paper

Abstract

A novel coccoid-shaped, hyperthermophilic, heterotrophic member of the archaea was isolated from a shallow marine hydrothermal system at Vulcano Island, Italy. The isolate grew between 56 and 90°C with an optimum around 85°C. The pH range for growth was 6.5 to 10.5, with an optimum around 9.0. Polysulfide and elemental sulfur were reduced to H2S. Sulfur stimulated the growth rate. The isolate fermented yeast extract, peptone, meat extract, tryptone, and casein. Isovalerate, isobutyrate, propionate, acetate, CO2, NH3, and H2S (in the presence of So) were detected as end products. Growth was not inhibited by H2. Based on DNA-DNA hybridization and 16S rRNA partial sequences, the new isolate represents a new species ofThermococcus, which we namedThermococcus alcaliphilus. The type strain is isolate AEDII12 (DSM 10322)

Key words

Archaea Hyperthermophiles Thermococcus alcaliphilus Polysulfide reduction Alkaline pH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth ofMethanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791PubMedGoogle Scholar
  2. Baumeister W, Lembeke G (1992) Structural features of archaebacterial cell envelopes. J Bioenerg Biomembr 24:567–575PubMedCrossRefGoogle Scholar
  3. Blumentals II, Itoh M, Olson GJ, Kelly RM (1990) Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacteriumPyrococcus furiosus. Appl Environ Microbiol 56:1255–1262PubMedGoogle Scholar
  4. Brenner DJ (1973) Desoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int J Syst Bacteriol 22:298–307CrossRefGoogle Scholar
  5. Brosius J, Palmer JL, Kennedy JP, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene fromEscherichia coli. Proc Natl Acad Sci USA 75:4801–4805PubMedCrossRefGoogle Scholar
  6. De Rosa M, Gambacorta A (1988) The lipids of archaebacteria. Prog Lipid Res 27:153–175PubMedCrossRefGoogle Scholar
  7. Fauque G, Le Gall J, Barton LL (1991) Sulfate-reducing and sulfur-reducing bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic Press, London, pp 271–337Google Scholar
  8. Fiala G, Stetter KO (1986)Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61CrossRefGoogle Scholar
  9. Fonselius SH (1983) Determination of hydrogen sulfide. In: Grasshoff K, Erhardt M, Kremling K (eds) Sea water analysis. Verlag Chemie, Weinheim, pp 73–80Google Scholar
  10. Giggenbach W (1972) Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20°C. Inorg Chem 11:1201–1207CrossRefGoogle Scholar
  11. Hafenbradl D, Keller M, Thiericke R, Stetter KO (1993) A novel unsaturated archaeal ether core lipid from the hyperthermophileMethanopyrus kandleri. System Appl Microbiol 16: 165–169Google Scholar
  12. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986)Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333CrossRefGoogle Scholar
  13. Ikeda S, Satake H, Hisona T, Terazawa T (1972) Potentiometric argimetric method for the successive titration of sulphide and dissolved sulphur in polysulphide solutions. Talanta 17:1650–1654CrossRefGoogle Scholar
  14. Kates M (1995) Techniques of lipidology: isolation, analysis and identification of lipids. In: Burden RH, Van Knippenberg PH (eds) Laboratory techniques in biochemistry and molecular biology. Elsevier, New York, pp 437–438Google Scholar
  15. Klimmek O, Krüger A, Streudel R, Holdt G (1991) Growth ofWolinella succinogenes with polysulfide as terminal acceptor of phosphorylative electron transport. Arch Microbiol 155: 177–182CrossRefGoogle Scholar
  16. Kobayaschi T, Kwak YS, Akiba T, Kudo T, Horikoshi K (1994)Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236Google Scholar
  17. Larsen N, Olsen GJ, Maidak BL, McCaughey MJ, Overbeck R, Macke TJ, Marsh TL, Woese CR (1993) The ribosomal data-base project. Nucleic Acids Res 21:3021–3023PubMedCrossRefGoogle Scholar
  18. Lauerer G, Kristjansson JK, Langworthy TA, König H, Stetter KO (1986)Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst Appl Microbiol 8:100–105Google Scholar
  19. Marmur J, Doty P (1962) Determination of the base composition of desoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118PubMedCrossRefGoogle Scholar
  20. Meyer SA, Schleifer KH (1978) Desoxyribonucleic acid reassociation in the classification of coagulase-positive Staphylococci. Arch Microbiol 117:183–188PubMedCrossRefGoogle Scholar
  21. Miroshnichenko ML, Bonch-Osmolovskaya EA, Neuner A, Kostrikina NA, Chernych NA, Alekseev VA (1989)Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Microbiol 12:257–262Google Scholar
  22. Neuner A, Jannasch HW, Belkin S, Stetter KO (1990)Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207CrossRefGoogle Scholar
  23. Nishihara M, Koga Y (1987) Extraction and composition of polar lipids from the archaebacterium,Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. J Biochem 101:997–1005PubMedGoogle Scholar
  24. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  25. Schauder R, Kröger A (1993) Bacterial sulfur respiration. Arch. Microbiol 159:491–497CrossRefGoogle Scholar
  26. Stetter KO (1992) Life at the upper temperature border. In: Tran Than Van J, Tran Than Van K, Mounolou JC, Schneider J, McKay C (eds) Frontiers of life. Editions Frontières, Gif-sur-Yvette, pp 195–219Google Scholar
  27. Stetter KO, König H, Stackebrandt E (1983)Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur-reducing archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4:535–551Google Scholar
  28. Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993)Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926PubMedGoogle Scholar
  29. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218PubMedCrossRefGoogle Scholar
  30. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria and eukarya. Proc Natl Acad Sci USA 87:4576–4579PubMedCrossRefGoogle Scholar
  31. Zillig W, Holz I, Janekovic D, Schäfer W, Reiter WD (1983) The archaebacteriumThermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94Google Scholar
  32. Zöphel A, Kennedy MC, Beinert ZH, Kroneck PMH (1988) Investigations on microbial sulfur respiration. 1. Activation and reduction of elemental sulfur in several strains of eubacteria. Arch Microbiol 150:72–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Martin Keller
    • 1
  • Franz-Josef Braun
    • 1
  • Reinhard Dirmeier
    • 1
  • Doris Hafenbradl
    • 1
  • Siegfried Burggraf
    • 1
  • Reinhard Rachel
    • 1
  • Karl O. Stetter
    • 1
  1. 1.Lehrstuhl für MikrobiologieRegensburgGermany

Personalised recommendations