Advertisement

Neurochemical Research

, Volume 21, Issue 6, pp 691–693 | Cite as

Prevention of cocaine-induced hyperactivity by a naloxone isomer with no opiate antagonist activity

  • Nithiananda Chatterjie
  • George J. Alexander
  • Jeri A. Sechzer
  • Kenneth W. Lieberman
Original Articles

Abstract

Dextro-naloxone [(+)-naloxone], an isomer with almost no opiate antagonist activity and no effect on spontaneous locomotor activity, can reduce cocaine-induced hyperactivity in mice. The classical opiate antagonist,levo-naloxone [(−)-naloxone], is known to counteract the excitatory motor effects of amphetamine and cocaine, but it has been tacitly assumed that this action oflevo-naloxone is dependent on its ability to antagonize endogenous opioids. Our finding that a naloxone isomer with little or no opioid antagonist activity is also able to inhibit the cocaine effect on spontaneous motility, calls for a reconsideration of this assumption.

Key Words

Cocaine hyperactivity naloxone dextro-naloxone opiate antagonist 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, G.J., and Chatterjie, N. 1991. Spontaneous motility in SW mice: amphetamine/naloxone antagonism. FASEB J. 5:A862.Google Scholar
  2. 2.
    Chatterjie, N., and Alexander, G.J. 1983. Naloxone-6-spiro-hydantoin: a new non-toxic compound with anticonvulsive properties. Neuropharmacol. 22:1151–1153.CrossRefGoogle Scholar
  3. 3.
    Chatterjie, N., Laorden, M.L., Puig, M.M., and Alexander, G.J. 1989. Prevention of hyperthermia-induced seizures in immature rats by a hydantoin derivative of naloxone. Life Sci. 45:857–862.PubMedCrossRefGoogle Scholar
  4. 4.
    Hooks, M.S., Jones, D.N., Justice, J.B., and Holtzman, S.G. 1992. Naloxone reduces amphetamine-induced stimulation of locomotor activity and in vivo dopamine release in the striatum and nucleus accumbens. Pharmacol. Biochem. Behav. 41:449–453.CrossRefGoogle Scholar
  5. 5.
    Jones, D.N., and Holtzman, S.G. 1992. Effects of naloxone infusion upon spontaneous and apetamine-induced activity. Eur. J. Pharmacol. 221:161–165.PubMedCrossRefGoogle Scholar
  6. 6.
    Jones, D.N., and Holtzman, S.G. 1994. Influence of naloxone upon motor activity induced by psychomotor stimulant drugs. Psychopharmacol. 114:215–225.CrossRefGoogle Scholar
  7. 7.
    Chatterjie, N., Alexander, G.J., Sechzer, J.A., and Lieberman K.W. 1995. Amphetamine/naloxone interaction: Prolonged protection by naloxyl-6α-spirohydantoin. FASEB J. 9:A1372.Google Scholar
  8. 8.
    Iijima, I., Minamikawa, J., Jacobson, A.E., Brossi, A., and Rice, K.C. 1978. Studies in the (+)-morphinan series. 5. Synthesis and biological properties of (+)-naloxone. J. Med. Chem. 21:398–400.PubMedCrossRefGoogle Scholar
  9. 9.
    Alexander, G.J., and Chatterjie, N. 1991. (+)-Naloxone antagonizes amphetamine-induced increase in spontaneous motility. FASEB J. 5:A682.Google Scholar
  10. 10.
    Chatterjie, N., and Alexander, G.J. 1992. Non-opiate effects of naloxone: antagonism of amphetamine-enhanced spontaneous activity in SW mice. FASEB J. 6:A994.Google Scholar
  11. 11.
    Scalzo, F.M., Ali, S.F., Frambes, N.A., and Spear, L.P. 1990. Weanling rats exposed prenatally to cocaine exhibit an increase in striatal D2 dopamine binding associated with an increase in ligand affinity. Pharmacol. Biochem. Behav. 37:371–373.PubMedCrossRefGoogle Scholar
  12. 12.
    Houdi, A.A., Bardo, M.T., and van Loon, G.R. 1989. Opioid mediation of cocaine-induced hyperactivity and reinforcement. Brain Res. 497:195–198.PubMedCrossRefGoogle Scholar
  13. 13.
    Kosten, T.A., Kleber, H.D., and Morgan, C. 1989. Role of opioid antagonists in treating intravenous cocaine abusers. Life Sci. 44: 887–892.PubMedCrossRefGoogle Scholar
  14. 14.
    Kosten, T.A. 1990. Cocaine attenuates severity of naloxone-precipitated opioid withdrawal. Life Sci. 47:1617–1623.PubMedCrossRefGoogle Scholar
  15. 15.
    Ramsey, N.F., and van Ree, J.M. 1991. Intracerebroventricular naltrexone treatment attenuates acquisition of intravenous cocaine self-administration in rats. Pharmacol. Biochem. Behav. 40:807–810.PubMedCrossRefGoogle Scholar
  16. 16.
    Bain, G., and Kornetsky, C. 1987. Naloxone attenuation of the effect of cocaine on rewarding brain stimulation. Life Sci. 40: 1119–1125.PubMedCrossRefGoogle Scholar
  17. 17.
    Bilsky, E.J., Montegut, M.J., Delong, C.L., and Reid, L.D. 1992. Opioidergic modulation of cocaine conditioned place preference. Life Sci. 50:85–90.CrossRefGoogle Scholar
  18. 18.
    Brasch, H. 1986. Influence of the optical isomers of (+)- and (−)-naloxone on beating frequency, contractile force and action potentials of guinea pig isolated cardiac preparation. Brit. J. Pharmacol. 88:733–740.Google Scholar
  19. 19.
    Sarne, T., Hochman, I., Eshed, M., and Oppenheimer, E. 1988. Anti-arrhythmic action of naloxone: direct effect on the rat heart. Life Sci. 43:859–864.PubMedCrossRefGoogle Scholar
  20. 20.
    Cregler, L.L., and Mark, H. 1986. Special report: Medical complications of cocaine abuse. New Engl. J. Med. 303:1495–1500.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Nithiananda Chatterjie
    • 1
  • George J. Alexander
    • 1
  • Jeri A. Sechzer
    • 2
  • Kenneth W. Lieberman
    • 3
  1. 1.New York State Institute for Basic Research in Developmental DisabilitiesStaten Island
  2. 2.Department of PsychologyPace UniversityNew York
  3. 3.Department of PsychiatryUniversity of Medicine and Dentistry of New JerseyNewark

Personalised recommendations