Advertisement

Bulletin Géodésique (1946-1975)

, Volume 37, Issue 1, pp 12–22 | Cite as

Long geodesics on the ellipsoid

  • H. F. Rainsford
Notices Scientifiques

Summary

This article examines the practical application of formulae for computing long lines on the ellipsoid. The main aim is to eliminate the successive approximation generally required. For the inverse problem, this is achieved by the method ofE. M. Sodano, Army Map Service, U.S.A. An adaptation of a method produced byG. T. McCaw is used for the direct problem.

Results are given of five practical examples, including two which extend halfway round the world. Construction of further special tables is recommended to simplify the computations required by a problem which has an ever increasing application.

Résumé

L'auteur, spécialiste bien connu de la question, examine et discute les différentes méthodes utilisées ou préconisées par différents Géodésiens, pour le calcul des lignes géodésiques de grande longueur à la surface de la terre.

Zusammenfassung

Der Verfasser—ein bekannter Fachmann auf diesem Gebiet—untersucht kritisch die von verschiedenen Geodäten angewandten oder vorgeschlagenen Verfahren zur Berechnung sehr langer geodätischer Linien.

Riassunto

L'Autore, specialista ben noto dell'argomento, esamina e discute i diversi metodi utilizzati o proposti dai differenti Geodeti per il calcolo delle geodetiche lunghe sulla superficie terrestre.

Resumen

El autor, especialista bien conocido en la cuestión, examina y discute los differentes métodos utilizados o preconizados por diferentes geodestas para el cálculo de lineas geodésicas de gran longitud en la superficie terrestre.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sodano, E. M., ‘Inverse computation for long lines; a non-iterative method based on the true geodesic’,Technical Report No. 7, Aug. (1950).Google Scholar
  2. 2.
    McCaw, G. T.,Empire Survey Review Vol. II, 156–63, 346–52, 505–8.Google Scholar
  3. 3.
    Empire Survey Review, Vol. VIII (1943), 172–6.Google Scholar
  4. 4.
    Lambert, W. D., ‘The distance between two widely separated points on the surface of the earth’,J. Wash. Acad. Sci. 32 (1942), 125–30.Google Scholar
  5. 5.
    Rainsford, H. F. ‘Long lines on the earth: various formulae’,Empire Survey Review, Vol. X (1949), 19–29, 74–82.CrossRefGoogle Scholar

Copyright information

© Butterworths Scientific Publications 1955

Authors and Affiliations

  • H. F. Rainsford
    • 1
  1. 1.Tolworth (G.B.)

Personalised recommendations