Fastin vivo measurements of local tissue impedances using needle electrodes
Article
Received:
Accepted:
- 217 Downloads
- 22 Citations
Abstract
The objective of the research is to show an in vivo, fast method of measurement of local tissue bio-impedance in the beta dispersion region (0–200 kHz). A needle electrode is used for the purpose. The performances with respect to circuits, electrodes, measurement area and electrical representations are evaluated. A measurement example is shown, and the electrical representations are discussed and compared using it. The method discussed, although invasive, is considered to be useful for local tissue diagnoses concerning structures and physiological functions.
Keywords
Bio-impedance Tissue Needle electrode Pulse response method Measurement Equivalent circuitPreview
Unable to display preview. Download preview PDF.
References
- Ackmann, J. J. andSeitz, M. A. (1984): ‘Methods of complex impedance measurements in biologic tissues’.Crit. Rev. Biomed. Eng.,11, pp. 281–311.Google Scholar
- Baker, L. E. (1989): ‘Applications of the impedance technique to the respiratory system’,IEEE Eng. Med. & Biol. Mag.,8, pp. 50–52.CrossRefGoogle Scholar
- Bullard, D. E. andMakachinas, T. T. (1987): ‘Measurement of tissue impedance in conjunction with computed tomographyguided stereotaxic biopsies’,J. Neurol. Neurosurg. & Psych.,50, pp. 43–51.CrossRefGoogle Scholar
- Choy, T. T. C. (1978): ‘Transient response studies of biological cell impedance’.Med. Biol. Eng. Comput.,16, pp. 633–641.CrossRefGoogle Scholar
- Cosman, E. R., Rittman, W. J., Nashold, B. S. andMakachinas, T. T. (1988): ‘Radiofrequency lesion generation and its effect on tissue impedance’.Appl. Neurophysiol.,51, pp. 230–242.Google Scholar
- Davidson, D. W. andCole, R. H. (1951): ‘Dielectric relaxation in glycerol, propylene glycol andn-propanol’.J. Chem. Phys.,19, pp. 1484–1490.CrossRefGoogle Scholar
- Foster, K. R. andSchwan, H. P. (1989): ‘Dielectrical properties of tissues and biological materials: a critical review’.Crit. Rev. Biomed. Eng.,17, pp. 25–104.Google Scholar
- Geddes, L. A. andHoff, H. E. (1964): ‘The measurement of physiologic events byelectrical impedance: a review’.Am. J. Med. Electr.,3, pp. 16–27.Google Scholar
- Geddes, L. A andBaker, L. E. (1967): ‘The specific resistance of biological materials—a compendium of data for the biomedical engineer and physiologist’.Med. Biol. Eng.,5, pp. 271–293.CrossRefGoogle Scholar
- Geddes, L. A. (1989): ‘Cardiac output using the saline-dilution impedance technique’.IEEE Eng. Med. & Biol. Mag.,8, pp. 22–26.CrossRefGoogle Scholar
- Kim, Y., Woo, H. andLuedtke, A. E. (1989): ‘Impedance tomography and its application in deep venous thrombosis detection’.IEEE Eng. Med. Biol. Mag.,8, pp. 46–49.CrossRefGoogle Scholar
- Kimura, S., Morimoto, T., Uyama, T., Monden, Y., Kinouchi, Y. andIritani, T. (1994): ‘Application of electrical impedance analysis for diagnosis of a pulmonary mass’.Chest.,105, pp. 1679–1682.Google Scholar
- Konishi, Y., Morimoto, T., Kinouchi, Y., Iritani, T. andMonden, Y. (1995): ‘Electrical properties of extracted rat liver tissue’,Res. Exp. Med.,195, pp. 183–192.Google Scholar
- Matsuda, K., Arimiya, S., Fujimura, H., Tada, M., Takeuchi, K., Mizumachi, S., Yanai, H., Oka, S., Okazaki, Y. andTakemoto, T. (1987): ‘Study on the measurements of gastric mucosal electrical bio-impedance using endoscope in man’.Gastroenterol. Endosc.,29, pp. 1130–1141.Google Scholar
- Morimoto, T., Kinoughi, Y., Iritani, T., Kimura, S., Konishi, Y, Mituyama, N., Komai, K. andMonden, Y. (1990): ‘Measurement of the electrical bio-impedance of breast tumours’.Eur. Surg. Res.,22, pp. 86–92.Google Scholar
- Morimoto, T., Kimura, S., Konishi, Y., Mituyama, N., Komai, K., Uyama, T., Monden, Y., Kinouchi, Y. andIritani, T. (1993): ‘A study of the electrical bio-impedance of tumours’.J. Invest. Surg.,6, pp. 25–32.CrossRefGoogle Scholar
- Patterson, R. P. (1989): ‘Fundamentals of impedance cardiography’IEEE Eng. Med. & Biol. Mag.,8, pp. 35–38.CrossRefGoogle Scholar
- Sakamoto, K., Kaneko, K., Ezaki, M., Fujii, M., Kanai, H. andAsano, T. (1995): ‘Estimation of human whole body fat volume by electrical impedance method’.Jpn. J. Med. Electr. Biol. Eng.,33, pp. 2–9.Google Scholar
- Schwan, H. P. andKay, C. F. (1956): ‘Specific resistance of body tissues’.Circulation Res.,4, pp. 664–670.Google Scholar
- Schwan, H. P. (1957): ‘Electrical properties of tissue and cell suspensions’,in Lawrence, J. H. andTobias, C. A (Eds.): Advances in biological and medical physics (Academic Press, New York) pp. 147–209.Google Scholar
- Singh, B., Smith, C. W. andHughes, R. (1979): ‘In vivo dielectric spectrometer’.Med. Biol. Eng. Comput.,17, pp. 45–60.CrossRefGoogle Scholar
- Takahashi, S. (1953): ‘Research on dielectric properties of electrical insulating materials and their measurements’.Researches of the Electrical Laboratory in Japan, No. 539.Google Scholar
- Thomas, B. J., Cornish, B. H. andWard, L. C. (1992): ‘Bioelectrical impedance analysis for measurement of body fluid volumes: a review’.J. Clin. Eng.,17, pp. 505–510.Google Scholar
- Webster, J. G. (1990): ‘Electrical impedance tomography’, (Adam Hilger, Bristol).Google Scholar
- Yamamoto, Y. andYamamoto, T. (1987): ‘Measurement of electrical bioimpedance and its applications’.Medical Progress through Technology,12, pp. 171–183.Google Scholar
Copyright information
© IFMBE 1997