Advertisement

Medical and Biological Engineering and Computing

, Volume 35, Issue 5, pp 486–492 | Cite as

Fastin vivo measurements of local tissue impedances using needle electrodes

  • Y. Kinouchi
  • T. Iritani
  • T. Morimoto
  • S. Ohyama
Article

Abstract

The objective of the research is to show an in vivo, fast method of measurement of local tissue bio-impedance in the beta dispersion region (0–200 kHz). A needle electrode is used for the purpose. The performances with respect to circuits, electrodes, measurement area and electrical representations are evaluated. A measurement example is shown, and the electrical representations are discussed and compared using it. The method discussed, although invasive, is considered to be useful for local tissue diagnoses concerning structures and physiological functions.

Keywords

Bio-impedance Tissue Needle electrode Pulse response method Measurement Equivalent circuit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackmann, J. J. andSeitz, M. A. (1984): ‘Methods of complex impedance measurements in biologic tissues’.Crit. Rev. Biomed. Eng.,11, pp. 281–311.Google Scholar
  2. Baker, L. E. (1989): ‘Applications of the impedance technique to the respiratory system’,IEEE Eng. Med. & Biol. Mag.,8, pp. 50–52.CrossRefGoogle Scholar
  3. Bullard, D. E. andMakachinas, T. T. (1987): ‘Measurement of tissue impedance in conjunction with computed tomographyguided stereotaxic biopsies’,J. Neurol. Neurosurg. & Psych.,50, pp. 43–51.CrossRefGoogle Scholar
  4. Choy, T. T. C. (1978): ‘Transient response studies of biological cell impedance’.Med. Biol. Eng. Comput.,16, pp. 633–641.CrossRefGoogle Scholar
  5. Cosman, E. R., Rittman, W. J., Nashold, B. S. andMakachinas, T. T. (1988): ‘Radiofrequency lesion generation and its effect on tissue impedance’.Appl. Neurophysiol.,51, pp. 230–242.Google Scholar
  6. Davidson, D. W. andCole, R. H. (1951): ‘Dielectric relaxation in glycerol, propylene glycol andn-propanol’.J. Chem. Phys.,19, pp. 1484–1490.CrossRefGoogle Scholar
  7. Foster, K. R. andSchwan, H. P. (1989): ‘Dielectrical properties of tissues and biological materials: a critical review’.Crit. Rev. Biomed. Eng.,17, pp. 25–104.Google Scholar
  8. Geddes, L. A. andHoff, H. E. (1964): ‘The measurement of physiologic events byelectrical impedance: a review’.Am. J. Med. Electr.,3, pp. 16–27.Google Scholar
  9. Geddes, L. A andBaker, L. E. (1967): ‘The specific resistance of biological materials—a compendium of data for the biomedical engineer and physiologist’.Med. Biol. Eng.,5, pp. 271–293.CrossRefGoogle Scholar
  10. Geddes, L. A. (1989): ‘Cardiac output using the saline-dilution impedance technique’.IEEE Eng. Med. & Biol. Mag.,8, pp. 22–26.CrossRefGoogle Scholar
  11. Kim, Y., Woo, H. andLuedtke, A. E. (1989): ‘Impedance tomography and its application in deep venous thrombosis detection’.IEEE Eng. Med. Biol. Mag.,8, pp. 46–49.CrossRefGoogle Scholar
  12. Kimura, S., Morimoto, T., Uyama, T., Monden, Y., Kinouchi, Y. andIritani, T. (1994): ‘Application of electrical impedance analysis for diagnosis of a pulmonary mass’.Chest.,105, pp. 1679–1682.Google Scholar
  13. Konishi, Y., Morimoto, T., Kinouchi, Y., Iritani, T. andMonden, Y. (1995): ‘Electrical properties of extracted rat liver tissue’,Res. Exp. Med.,195, pp. 183–192.Google Scholar
  14. Matsuda, K., Arimiya, S., Fujimura, H., Tada, M., Takeuchi, K., Mizumachi, S., Yanai, H., Oka, S., Okazaki, Y. andTakemoto, T. (1987): ‘Study on the measurements of gastric mucosal electrical bio-impedance using endoscope in man’.Gastroenterol. Endosc.,29, pp. 1130–1141.Google Scholar
  15. Morimoto, T., Kinoughi, Y., Iritani, T., Kimura, S., Konishi, Y, Mituyama, N., Komai, K. andMonden, Y. (1990): ‘Measurement of the electrical bio-impedance of breast tumours’.Eur. Surg. Res.,22, pp. 86–92.Google Scholar
  16. Morimoto, T., Kimura, S., Konishi, Y., Mituyama, N., Komai, K., Uyama, T., Monden, Y., Kinouchi, Y. andIritani, T. (1993): ‘A study of the electrical bio-impedance of tumours’.J. Invest. Surg.,6, pp. 25–32.CrossRefGoogle Scholar
  17. Patterson, R. P. (1989): ‘Fundamentals of impedance cardiography’IEEE Eng. Med. & Biol. Mag.,8, pp. 35–38.CrossRefGoogle Scholar
  18. Sakamoto, K., Kaneko, K., Ezaki, M., Fujii, M., Kanai, H. andAsano, T. (1995): ‘Estimation of human whole body fat volume by electrical impedance method’.Jpn. J. Med. Electr. Biol. Eng.,33, pp. 2–9.Google Scholar
  19. Schwan, H. P. andKay, C. F. (1956): ‘Specific resistance of body tissues’.Circulation Res.,4, pp. 664–670.Google Scholar
  20. Schwan, H. P. (1957): ‘Electrical properties of tissue and cell suspensions’,in Lawrence, J. H. andTobias, C. A (Eds.): Advances in biological and medical physics (Academic Press, New York) pp. 147–209.Google Scholar
  21. Singh, B., Smith, C. W. andHughes, R. (1979): ‘In vivo dielectric spectrometer’.Med. Biol. Eng. Comput.,17, pp. 45–60.CrossRefGoogle Scholar
  22. Takahashi, S. (1953): ‘Research on dielectric properties of electrical insulating materials and their measurements’.Researches of the Electrical Laboratory in Japan, No. 539.Google Scholar
  23. Thomas, B. J., Cornish, B. H. andWard, L. C. (1992): ‘Bioelectrical impedance analysis for measurement of body fluid volumes: a review’.J. Clin. Eng.,17, pp. 505–510.Google Scholar
  24. Webster, J. G. (1990): ‘Electrical impedance tomography’, (Adam Hilger, Bristol).Google Scholar
  25. Yamamoto, Y. andYamamoto, T. (1987): ‘Measurement of electrical bioimpedance and its applications’.Medical Progress through Technology,12, pp. 171–183.Google Scholar

Copyright information

© IFMBE 1997

Authors and Affiliations

  • Y. Kinouchi
    • 1
  • T. Iritani
    • 1
  • T. Morimoto
    • 2
  • S. Ohyama
    • 3
  1. 1.Department of Electrical & and Electronic EngineeringThe University of TokushimaTokushimaJa[an
  2. 2.School of Medical SciencesThe university of TokushimaTokushimaJapan
  3. 3.Shikoku Instrumentation Co.TadotsuJapan

Personalised recommendations