Transgenic Research

, Volume 1, Issue 6, pp 285–297 | Cite as

Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants

  • Jonathan D. G. Jones
  • L. Shlumukov
  • F. Carland
  • J. English
  • S. R. Scofield
  • G. J. Bishop
  • K. Harrison
Technical Note

Abstract

Progress in plant molecular biology has depended heavily on the availability of effective vectors for plant cell transformation and heterologous expression. In this paper we describe the structures of a wide array of plasmids which have proved extremely effective in (a) plant transformation, (b) expression of heterologous genes and (c) assaying the activity of transposons in transgenic plants. Constructs that confer resistance to kanamycin, hygromycin, streptomycin, spectinomycin and phosphinotricin, or that confer β-glucuronidase (GUS) gene expression are presented. Binary vector constructs that carry polylinkers of the pUC and Bluescript types are also described. Plasmids that permit the expression of any heterologous reading frame from either nopaline synthase (nos) or octopine synthase (ocs) promoters, as well as the cauliflower mosaic virus 35S promoter, using either the nopaline synthase or octopine synthase 3′ polyadenylation sequences, are presented. These constructs permit a choice of orientation of the resulting transgene of interest, relative to the orientation of the selection marker gene. Most of the plasmids described here are publicly available.

Keywords

binary vector plant expression plasmid kanamycin resistance spectinomycin resistance hygromycin resistance phosphinotricin resistance streptomycin resistance β-glucuronidase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, R. F., Idler, K. B., Thompson, D. V. and Kemp, J. D. (1983) Nucleotide sequence of the T-DNA region from theAgrobacterium tumefaciens octopine Ti plasmid pTi15955.Plant Mol. Biol. 2, 335–50.CrossRefGoogle Scholar
  2. Behrens, U., Fedoroff, N., Laird, A., Müller-Neumann, M., Starlinger, P. and Yoder, J. (1984) Cloning of theZea mays controlling elementAc from thewx-m7 allele.Mol. Gen. Genet. 194, 346–7.CrossRefGoogle Scholar
  3. Bevan, M. (1984) BinaryAgrobacterium vectors for plant transformation.Nucl. Acids Res. 12, 8711–21.PubMedGoogle Scholar
  4. Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA.Nucl. Acids Res. 7, 1513–20.PubMedGoogle Scholar
  5. Chinault, A. C., Blakesley, V. A., Roessler, E., Willis, D. G., Smith, C. A., Cook, R. G. and Fenwick, R. G. (1986) Characterization of transferable plasmids fromShigella flexneri 2a that confer resistance to trimethoprim, streptomycin and sulfonamides.Plasmid 15, 119–31.PubMedCrossRefGoogle Scholar
  6. Comai, L., Moran, P. and Maslyar, D. (1990) Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements.Pl. Mol. Biol. 15, 373–81.CrossRefGoogle Scholar
  7. DeBlock, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., RaoMovva, N., Thompson, C., Van Montagu, M. and Leemans, J. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme.EMBO J. 6, 2513–8.Google Scholar
  8. DeGreve, H., Dhaese, P., Seurinck, J., Lemmers, S., van Montagu, M. and Schell, J. (1983) Nucleotide sequence and transcript map of theAgrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene.J. Mol. Appl. Genet. 1, 499–511.Google Scholar
  9. Deblaere, R., Bytebier, B., DeGreve, H., Deboeck, F., Schell, J., Van Montagu, M. and Leemans, J. (1985) Efficient octopine Ti plasmid-derived vectors forAgrobacterium-mediated gene transfer to plants.Nucl. Acids Res. 13, 4777–88.PubMedGoogle Scholar
  10. Depicker, A., Stachel, S., Dhaese, P., Zambryski, P. and Goodman, H. M. (1982) Nopaline synthase: transcript mapping and DNA sequence.J. Mol. Appl. Genet. 1, 561–73.PubMedGoogle Scholar
  11. Ditta, G., Stanfield, S., Corbin, D. and Helinski, D. R. (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank ofRhizobium meliloti.Proc. Natl Acad. Sci. USA 77, 347–51.CrossRefGoogle Scholar
  12. Ellis, J. G., Llewellyn, D. J., Walker, J. C., Dennis, E. S. and Peacock, W. J. (1987) Theocs element: a 16 base pair palindrome essential for activity of the octopine synthase enhancer.EMBO J. 6, 3203–8.PubMedGoogle Scholar
  13. Figurski, D. H. and Helinski, D. R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function providedin trans.Proc. Natl Acad. Sci. USA 76, 1648–52.PubMedCrossRefGoogle Scholar
  14. Fillatti, J. J., Kiser, J., Rose, R. and Comai, L. (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binaryAgrobacterium tumefaciens vector.Bio/Technology 5, 726–30.CrossRefGoogle Scholar
  15. Friedman, A. M., Long, S. R., Brown, S. E., Buikema, W. J. and Ausubel, F. M. (1982) Construction of a broad host range cosmid cloning vector and its use in genetic analysis ofRhizobium mutants.Gene 18, 289–96.PubMedCrossRefGoogle Scholar
  16. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C. and Wilson, T. M. A. (1987) The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcriptsin vivo andin vitro.Nucl. Acids Res. 15, 3257–72.PubMedGoogle Scholar
  17. Grierson, D., Fray, R. G., Hamilton, A. J., Smith, C. J. S. and Watson, C. F. (1991) Does co-suppression of sense genes in transgenic plants involve antisense RNA?Trends Biotechnol. 9, 122–3.CrossRefGoogle Scholar
  18. Gritz, L. and Davies, J. (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression inEscherichia coli andSaccharomyces cerevisiae.Gene 25, 179–88.PubMedCrossRefGoogle Scholar
  19. Harpster, M. H., Townsend, J. A., Jones, J. D. G., Bedbrook, J. and Dunsmuir, P. (1988) Relative strengths of the 35S cauliflower mosaic virus, 1′, 2′, and nopaline synthase promoters in transformed tobacco, sugarbeet and oilseed rape callus tissueMol. Gen. Genet. 212, 182–90.PubMedCrossRefGoogle Scholar
  20. Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J. and Schilperoort, R. A. (1983) A binary plant vector strategy based on separation of vir- and T-region of theAgrobacterium tumefaciens Ti-plasmid.Nature 303, 179–80.CrossRefGoogle Scholar
  21. Horsch, R. B., Fry, J. E., Hoffmann N. L., Eichholtz, D., Rogers, S. G. and Fraley, R. T. (1985) A simple and general method of transferring genes into plants.Science 227, 1229–31.CrossRefGoogle Scholar
  22. Huffman, G. A., Beach, L. R., Martich, J. M., Fall, M. M., Sims, L. E., Burrus, M., Marsh, W. A., Maddock, S. E. and Bauer, R. E. (1991) Optimizing plant expression vectors.J. Cell Biochem. Suppl.15A, 98.Google Scholar
  23. Ish-Horowicz, D. and Burke, J. F. (1981) Rapid and efficient cosmid cloning.Nucl. Acids Res. 9, 2989–97.PubMedGoogle Scholar
  24. Jefferson, R. A., Burgess, S. M. and Hirsch, D. (1986) β-glucuronidase fromEscherichia coli as a gene-fusion marker.Proc. Natl Acid. Sci. USA 83, 8447–51.CrossRefGoogle Scholar
  25. Jones, J. D. G., Dunsmuir, P. and Bedbrook, J. (1985) High level expression of introduced chimaeric genes in regenerated transformed plants.EMBO J. 4, 2411–8.PubMedGoogle Scholar
  26. Jones, J. D. G., Carland, F. M., Maliga, P. and Dooner, H. K. (1989) Visual detection of transposition of the maize elementActivator (Ac) in tobacco seedlings,Science 244, 204–7.CrossRefPubMedGoogle Scholar
  27. Jones, J. D. G., Carland, F. C., Lim, E., Ralston, E. and Dooner, H. K. (1990) Preferential transposition of the maize elementActivator to linked chromosomal locations in tobacco.Plant Cell 2, 701–7.PubMedCrossRefGoogle Scholar
  28. Jones, J. D. G., Harper, L., Carland, F., Ralston, E. and Dooner, H. (1991) Reversion and altered variegation of an SPT::Ac allele in tobacco.Maydica 36, 329–35.Google Scholar
  29. Klosgen, R. B., Gierl, A., Schwarz-Sommerz Z. and Saedler, H. (1986) Molecular analysis of thewaxy locus ofZea mays.Mol. Gen. Genet. 203, 237–44.CrossRefGoogle Scholar
  30. Kunkel, T. (1985) Rapid and efficient site-directed mutagenesis without phenotypic selection.Proc. Natl Acad. Sci. USA 82, 488–92.PubMedCrossRefGoogle Scholar
  31. Maliga, P., Svab, Z., Harper, E. C. and Jones, J. D. G. (1988) Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence.Mol. Gen. Genet. 214, 456–9.PubMedCrossRefGoogle Scholar
  32. Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene intoPetunia results in reversible co-suppression of homologous genesin trans.Pl. Cell 2, 279–89.CrossRefGoogle Scholar
  33. Odell, J., Caimi, P., Sauer, B. and Russell, S. (1990) Site-directed recombination in the genome of transgenic tobacco.Mol. Gen. Genet. 223, 369–78.PubMedCrossRefGoogle Scholar
  34. Odell, J. T., Nagy, F. and Chua, N.-H. (1984) Identification of DNA sequences required for activity of the cauliflower mosaic visrus 35S promoter.Nature 313, 810–2.CrossRefGoogle Scholar
  35. Olszewski, N. E., Martin, F. B. and Ausubel, F. M. (1988) Specialized binary vectors for plant transformation: expression of theArabidopsis thaliana AHAS gene inNicotiana tabacum.Nucl. Acids Res. 16, 10765–82.PubMedGoogle Scholar
  36. Ow, D. W., Jacobs, J. D. and Howell, S. (1987) Functional regions of the cauliflower mosaic virus 35S promoter determined by use of the firefly luciferase gene as a reporter of promoter activity.Proc. Natl Acad. Sci. USA 84, 4870–4.PubMedCrossRefGoogle Scholar
  37. Rogers, S. G., Klee, H. J., Horsch, R. B. and Fraley, R. T. (1987) Improved vectors for plant transformation: expression cassette vectors and new selectable markers.Methods in Enzymol. 153, 253–305.Google Scholar
  38. Rothstein, S. J., Lahners, K. N., Lotstein, R. J., Carozzie, N. B., Jayne, S. M. and Rice, D. A. (1987) Promoter cassettes, antibiotic-resistance genes, and vectors for plant transformation.Gene 53, 153–61.PubMedCrossRefGoogle Scholar
  39. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989)Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  40. Scofield, S., Harrison, K. A., Nurrish, S. J. and Jones, J. D. G. (1992) Promoter fusions to theAc transposase gene confer distinct patterns ofDs somatic and germinal excision in tobacco.Pl. Cell 4, 573–82.CrossRefGoogle Scholar
  41. Svab, Z., Harper, E. C., Jones, J. D. G. and Maliga, P. (1990) Aminoglycoside-3″-adenyltransferase confers resistance to streptomycin and spectinomycin inNicotiana tabacum.Pl. Mol. Biol. 14, 197–205.CrossRefGoogle Scholar
  42. Taylor, J. L., Jones, J. D. G., Sandler, S., Mueller, G. M., Bedbrook, J. and Dunsmuir, P. (1987) Optimizing the expression of chimeric genes in plant cells.Mol. Gen. Genet. 210, 572–7.CrossRefGoogle Scholar
  43. Van den Elzen, P., Lee, K. Y., Townsend, J. and Bedbrook, J. (1985) Simple binary vectors for DNA transfer to plant cells.Pl. Mol. Biol. 5, 149–54.CrossRefGoogle Scholar
  44. Velten, J., Velten, L., Hain, R. and Schell, J. (1984) Isolation of a dual plant promoter fragment from the Ti plasmid ofAgrobacterium tumefaciens.EMBO. J. 3, 2723–30.PubMedGoogle Scholar
  45. Vieira, J. and Messing, J. (1987) Production of single-stranded plasmid DNA.Methods in Enzymology 153, 3–25.PubMedCrossRefGoogle Scholar
  46. White, J., Chang, S-Y. P., Bibb, M. J. and Bibb, M. J. (1991) A cassette containing thebar gene ofStreptomyces hygroscopicus: a selectable marker for plant transformation.Nucl. Acids Res. 18, 1062.Google Scholar
  47. Yenofsky, R. L., Fine, M. F. and Pellow, J. W. (1990) A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure.Proc. Natl Acad. Sci. USA 87, 3435–9.PubMedCrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Jonathan D. G. Jones
    • 1
    • 4
  • L. Shlumukov
    • 1
    • 3
    • 4
  • F. Carland
    • 2
    • 4
  • J. English
    • 1
  • S. R. Scofield
    • 1
  • G. J. Bishop
    • 1
  • K. Harrison
    • 1
  1. 1.The Sainsbury Laboratory, John Innes Centre for Plant Science ResearchNorwich Research ParkNorwichUK
  2. 2.Department of Plant PathologyUniversity of CaliforniaBerkeleyUSA
  3. 3.Institute of Cell Biology and Genetic EngineeringUkrainian Academy of SciencesKievUkraine
  4. 4.Advanced Genetic Sciences (now DNA Plant Technology Corporation)OaklandUSA

Personalised recommendations