Journal of Plant Research

, Volume 110, Issue 3, pp 329–337 | Cite as

Phylogeny of the family hydrocharitaceae inferred fromrbcL andmatK gene sequence data

  • Norio Tanaka
  • Hiroaki Setoguchi
  • Jin Murata
Original Articles

Abstract

The family Hydrocharitaceae, with 15 genera and ca. 80 species, shows a remarkable morphological diversity which presumably developed as an adaptation to their aquatic habitat. This is particularly true in the case of the many different kinds of pollination mechanisms. To gather more basic information regarding the adaptive evolution of Hydrocharitaceae, we have carried out a phylogenetic analysis based on the sequences of therbcL andmatK. Our resulting neighbor-joining distance tree provides the following insights: (1) none of the previous classification systems were supported by molecular phylogenetic tree; (2) Najas (Najadaceae), which has never been included in Hydrocharitaceae except in Shaffer-Fehre's (1991) system based on seed coat structures, is an ingroup of Hydrocharitaceae; (3) Limnocharitaceae and Alismataceae are sister groups of Hydrocharitaceae; (4) the three marine genera,Halophila, Enhalus andThalassia, are monophyletic; and (5) a peculiar pollination mechanism specific to Hydrocharitaceae (Hydrocharitaceae-epihydrophily), underwent a parallel evolution.

Key words

Hydrocharitaceae Hydrophily matK gene sequences Molecular phylogeny Pollination mechanisms rbcL gene sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, J. andHasegawa, M. 1996. MOLPHY: Programs for Molecular Phylogenetics, ver. 2.3. Institute of Statistical Mathematics, Tokyo.Google Scholar
  2. Ancibor, E. 1979. Systematic anatomy of vegetative organs of Hydrocharitaceae. Bot. J. Linn. Soc.78: 237–266.Google Scholar
  3. Ascherson, P. andGurke, M. 1889. Hydrocharitaceae.In A. Engler and K. Prantl, eds., Die Naturlichen Pflanzenfamilien, vol. 1. Engelmann, Leipzig, pp. 238–258.Google Scholar
  4. Cao, Y., Adachi, J., Janke, A., Paabo, S. andHasegawa, M. 1994a. Phylogenetic relationships among Eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of s tree based on a single gene. J. Mol. Evol.39: 519–527.PubMedCrossRefGoogle Scholar
  5. Cao, Y., Adachi, J., Yano, T. andHasegawa, M. 1994b. Phylogenetic place of guinea pigs: no support of the Rodent-polyphyly hypothesis from Maximum-Likelihood analyses of multiple protein sequences. Mol. Biol. Evol.11: 593–604.PubMedGoogle Scholar
  6. Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.-L., Kron, K.A., Rettigg, J.H., Michaels, H.J., Kress, W.J., Karol, K.G., Clark, W.D., Hedren, M., Gaut, B.S., Jansen, R.K., Kim, K.-J., Wimpee, C.F., Smith, J.F., Furnier, G.R., Strauss, S.H., Xiang, Q.-Y., Plunkett, G.M., Soltis, P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E., Golenberg, E., Learn, G.H., Graham, S.W., Barrett, S.C.H., Dayanandan, S. andAlbert, V.A. 1993 Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. Ann. Missouri Bot. Gard.80: 528–580.CrossRefGoogle Scholar
  7. Cook, C.D.K. 1982. Pollination mechanisms in the Hydrocharitaceae.In J.J. Symoens, S.S. Hooper and P. Compere, eds. Studies on Aquatic Vascular Plants, Royal Botanical Society of Belgium, Brussels, pp. 1–15.Google Scholar
  8. Cook, C.D.K. andLuond, R. 1982. A revision of the genusNechamandra (Hydrocharitaceae). Aquat. Bot.13: 505–513.CrossRefGoogle Scholar
  9. Cox, P.A. 1983. Search theory, random motion, and the convergent evolution of pollen and spore morphology in aquatic plans. Am. Nat.121: 9–31.CrossRefGoogle Scholar
  10. Cox, P.A. 1988. Hydrophilous pollination. Ann. Rev. Ecol. Syst.19: 261–280.CrossRefGoogle Scholar
  11. Cox, P.A. 1991. Abiotic pollination: an evolutionary escape for animal-pollinated angiosperms. Phill. Trans. R. Soc. Lond. B333:217–224.Google Scholar
  12. Cox, P.A. andTomlinson, P.B. 1988. Pollination ecology of a seagrass,Thalassia testudinum (Hydrocharitaceae). in St. Croix. Amer. J. Bot.75: 958–965.CrossRefGoogle Scholar
  13. Dahlgren, R.M.T. 1985. The Families of the Monocytyledons. Springer-Verlag, Berlin.Google Scholar
  14. Eckhardt, T. 1964. Monocotyledonae 1. Reihe Helobiae.In H. Melchior, ed., A. Engler's Syllabus der Pflanzenfamilien, 12th edn, Borntraeger, Berlin, pp. 499–512.Google Scholar
  15. Engler, A. 1904. Syllabus der Pflanzenfamilien. Edn. IV. Wihelm Engelmann, Leipzig.Google Scholar
  16. Ernst-schwarzenbach, M. 1945. Zur Blutenbiologie einiger Hydrocharitaceen. Ber. Schweiz. Bot. Ges.55: 33–69.Google Scholar
  17. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39: 783–791.CrossRefGoogle Scholar
  18. Felsenstein, J. 1993. Phylogeny inference Package (PHYLIP) version 3.5c. University of Washington, Seattle.Google Scholar
  19. Felsentein, J. andKishino, H. 1993. Is there something wrong with the bootstrap on phylogenies? A reply to Hills and Bull. Syst. Biol.42: 193–200.CrossRefGoogle Scholar
  20. Hasebe, M., Omori, T., Nakazawa, M., Sano, T., Kato, M. andIwatsuki, K. 1994.rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc. Natl. Acad. Sci. USA91: 5730–5734.PubMedCrossRefGoogle Scholar
  21. Hasegawa, M., Kishino, H. andYano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol.22: 160–174.PubMedCrossRefGoogle Scholar
  22. Hutchinson, J. 1959. The Families of Flowering Plants. 2: Monocotyledons. 2nd edn. Oxford, Clarendon Press.Google Scholar
  23. Johnson, L.A., Schultz, J.L., Soltis, D.E. andSoltis, P.A. 1996. Monophyly and generic relationships of Polemoniaceae based onmatK sequences. Amer. J. Bot.83: 1207–1224.CrossRefGoogle Scholar
  24. Johnson, L.A. andSoltis, D.E. 1994.matK sequences and phylogenetic reconstruction in Saxifragacae s. s.. Syst. Bot.19: 143–156.CrossRefGoogle Scholar
  25. Johnson, L.A. andSoltis, D.E. 1995. Phylogenetic inference in Saxifragaceae sensu stricto andGilia (Polemoniaceae) usingmatK sequences. Ann. Missouri Bot. Gard.82: 149–175.CrossRefGoogle Scholar
  26. Kadono, Y. 1994. Aquatic Plants of Japan. Buń-ichi Sogo Shuppan, Co., Ltd, Tokyo.Google Scholar
  27. Kaul, R.B. 1968. Floral morphology and phylogeny in the Hydrocharitaceae. Phytomorphology18: 13–35.Google Scholar
  28. Kaul, R.B. 1969. Morphology and development of the flowers ofBootia cordata, Ottelia alismoides, and their synthetic hybrid (Hydrocharitaceae). Amer. J. Bot.56: 951–959.CrossRefGoogle Scholar
  29. Kaul, R.B. 1970. Evolution and adaptation of inflorescences in the Hydrocharitaceae. Amer. J. Bot.57: 708–715.CrossRefGoogle Scholar
  30. Kimura, M. 1980. A simple for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16: 111–120.PubMedCrossRefGoogle Scholar
  31. Kishino, H., Miyata, T. andHasegawa, M. 1990. Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts. J. Mol. Evol.31: 151–160.CrossRefGoogle Scholar
  32. Les, D.H., Garvin, D.K. andWimpee, C.F. 1993. Phylogenetic studies in the monocot subclass Alismatidae: evidence for a reappraisal of the aquatic order Najadales. Mol. Phylogenet. Evol.2: 304–314.PubMedCrossRefGoogle Scholar
  33. Les, D.H. andHaynes, R.R. 1995. Systematics of subclass Alismatidae: a systhesis of approaches.In P.J. Rudall, P.J. Cribb, D.F. Culter and C.J. Humphries, eds., Monocotyledons: Systematics and Evolution, Royal Botanic Gardens, Kew, pp. 353–377.Google Scholar
  34. Maddison, W.P. andMaddison, D.R. 1992. MacClade: Analysis of Phylogeny and Character Evolution. Version 3.0. Sinauer, Sunderland, MA.Google Scholar
  35. Maier, R.M., Neckermann, K., Igloi, G.L. andKossel, H. 1995. Complete sequence of the maize chroloplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol.251: 614–628.PubMedCrossRefGoogle Scholar
  36. McConchie, C.A. 1983. Floral development ofMaidenia rubra Rendle (Hydrocharitaceae). Aust. J. Bot.31: 585–603.CrossRefGoogle Scholar
  37. Miki, S. 1937. The origin ofNajas andPotamogeton. Bot. Mag. Tokyo51: 472–480.Google Scholar
  38. Palmer, J.D. 1986. Isolation and structural analysis of chroloplast DNA. Methods in Enzymology118: 167–186.CrossRefGoogle Scholar
  39. Pettitt, J.M. 1980. Reproduction in seagrasses: Nature of the pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann. Bot.45: 257–272.Google Scholar
  40. Saitou, N. andNei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4: 406–425.PubMedGoogle Scholar
  41. Sculthorpe, C.D. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London.Google Scholar
  42. Shaffer-Fehre, M. 1991a The endotegmen tuberculae: an account of little-known structures from the seed coat of the Hydrocharitoideae (Hydrocharitaceae) andNajas (Najadaceae). Bot. J. Linn. Soc.107: 169–188.Google Scholar
  43. Shaffer-Fehre, M. 1991b The position ofNajas within the subclass Alismatidae (Monocotyledones) in the light of new evidence from seed coat structures in the Hydrocharitoideae (Hydrocharitaceae). Bot. J. Linn. Soc.107: 189–209.Google Scholar
  44. Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B, Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. andSugiura, M. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J.5: 2043–2049.PubMedGoogle Scholar
  45. Singh, V. 1965. Morphological and anatomical studies in Helobiae. III. Vascular anatomy of the node and flower of Najadaceae. Proc. Indian Acad. Sci. B.61: 98–108.Google Scholar
  46. Soltis, D.E., Kuzoff, R.E., Conti, E., Gornall, R. andFerguson, K. 1996.matK andrbcL gene sequence data indicate thatSaxifraga (saxifragaceae) is polyphyletic. Amer. J. Bot.83: 371–382.CrossRefGoogle Scholar
  47. Soltis, D.E., Soltis, P.S., Clegg, M.T. andDurbin, M. 1990.rbcL sequence and chroloplast divergence and phylogenetic relationships in Saxifragaceae sensu lato. Proc. Natl. Acad. Sci. USA.87: 4640–4644.PubMedCrossRefGoogle Scholar
  48. Takhtajan, A. 1966. Systema et Phylogenia Magnoliophytorum. Nauka, Moscow.Google Scholar
  49. Tomlinson, P. B. 1982. Anatomy of the Monocotyledons VII. Helobiae (Alismatidae). Clarendon Press, Oxford.Google Scholar

Copyright information

© The Botanical Society of Japan 1997

Authors and Affiliations

  • Norio Tanaka
    • 1
  • Hiroaki Setoguchi
    • 1
  • Jin Murata
    • 1
  1. 1.Makino Herbarium, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations