# Finite-element analysis of balloon angioplasty

Blood Flow

- 178 Downloads
- 16 Citations

## Abstract

Finite-element modelling is used to simulate the response of atherosclerotic arteries to a balloon angioplasty procedure. Material properties for the normal wall are derived from experimental data, and the properties of the plaque are varied over a wide range. Comparison with experimental data shows that the normal aterial wall can be appropriately modelled using a hyperelastic material definition. Large-strain, nonlinear analysis was used to simulate the dilatation of three typical plaque configurations by an angioplasty balloon. Stress contour plots are presented for each configuration. Results show good agreement with previous histologic studies.

## Keywords

Atherosclerosis Balloon angioplasty Finite-element analysis Hyperelastic## References

- Bergel, D. H. (1961): ‘The dynamic elastic properties of the arterial wall,”
*J. Physiol.*,**156**, pp. 458–469Google Scholar - Carew, T. E., Vaishnav, R. N., andPatel, D. J. (1968): ‘Compressibility of the arterial wall,”
*Circ. Res.*,**23**, pp. 61–68.Google Scholar - Carmines, D. V., McElhaney, J. H., andStack, R. (1991): ‘A piece-wise nonlinear elastic stress expression of human and pig coronary arteries tested,”
*J. Biomech.*,**24**, (10), pp. 899–906CrossRefGoogle Scholar - Castaneda-Zuniga, W. R., Sibley, R., andAmplatz, K. (1984): ‘The pathologic basis of angioplasty,”
*Angiology*,**35**, pp. 195–205.Google Scholar - Chuong, C. J., andFung, Y. C. (1983): ‘Three dimensional stress distribution in arteries,”
*J. Biomech. Eng.*,**105**, pp. 268–274.CrossRefGoogle Scholar - Chuong, C. J., andFung, Y. C. (1984): ‘Compressibility and constitutive equation of aterial wall in radical compression experiments,”
*J. Biomech.*,**17**, (1), pp. 35–40.CrossRefGoogle Scholar - Cox, R. H. (1972): ‘A model for the dynamic mechanical properties of arteries’,-
*ibid.***5**, pp. 135–152.CrossRefGoogle Scholar - Dobrin, P. B., andDoyle, J. M. (1970): ‘Vascular smooth muscle and the anisotropy of dog carotid artery,”
*Circ. Res.*,**27**, pp. 105–119Google Scholar - Dobrin, P. B., andRovick, A. A. (1969): ‘Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries,”
*Am. J. Physiol.*,**217**, pp. 1644–1651.Google Scholar - Dotter, C. T., andJudkins, M. P. (1964): ‘Transluminal treatment of atherosclerotic obstruction: Description of a new technique and a preliminary report of its application,”
*Circ.*,**30**, pp. 654–670.Google Scholar - Doyle, J. M., andDobrin, P. B. (1973): ‘Stress gradients in the walls of large arteries,”
*J. Biomech.*,**16**, pp. 631–639.CrossRefGoogle Scholar - Hori, R. Y., andMockros, L. F. (1976)Indentation test of human articular cartilage.
*J. Biomech.*,**9**, pp. 295–268.CrossRefGoogle Scholar - Kinney, T. B., Chin, A. K., Rurik, G. W., Finn, J. C., Shoor, P. M., Hayden, W. G., andFogarty, T. J. (1984): ‘Transluminal angioplasty: A mechanical pathophysiological correlation of its physical mechanisms,”
*Radiol.*,**153**, pp. 85–89.Google Scholar - Kleinberger, M. (1991): ‘An experimental and theoretical study of arterial viscoelasticity: applications to transluminal angioplasty’, Ph.D. dissertation, Duke University.Google Scholar
- Lawton, R. W. (1957): ‘Some aspects of research in biological elasticity: Introductory remarks’, inRemington, R. W. (Ed): ‘Tissue elasticity’ (American Physiological Society, Washington DC).Google Scholar
- Malvern, L. E. (1969): ‘Introduction to the mechanics of continuous medium’, (Prentice Hall, Englewood Cliffs, NJ).Google Scholar
- Patel, D. J., andFry, D. L. (1964): ‘In situ pressure-radius-length measurements in ascending aorta of anesthetized dogs’,
*J. Appl. Physiol.*,**19**, pp. 413–416.Google Scholar - Vito, R. P., andHickey, J. (1980): ‘The mechanical properties of soft tissues II: The elastic response of arterial segments,”
*J. Biomech.*,**13**, pp. 951–957.CrossRefGoogle Scholar - Wolf, G. L., LeVeen, R. F., andRing, E. J. (1984): ‘Potential mechanisms of angioplasty,”
*Cardiovascular Intervent. Radiol.*,**7**, pp. 11–17.Google Scholar - Zarins, C. K., Lu, C. T., Gewertz, B. L., Lyon, R. T., Rush, D. S., andGlagov, S. (1982): ‘Arterial disruption and remodeling following balloon dilatation,”
*Surgery*,**92**, pp. 1086–1095Google Scholar

## Copyright information

© IFMBE 1994