Bulletin géodésique

, Volume 61, Issue 2, pp 177–197 | Cite as

Determination of geoidal heights and deflections of the vertical for the hellenic area using heterogeneous data

  • I. N. Tziavos


Mean gravity anomalies, deflections of the vertical, and a geopotential model complete to degree and order180 are combined in order to determine geoidal heights in the area bounded by [34°≦ϕ≤42°, 18°≦λ≦28°]. Moreover, employing point gravity anomalies simultaneously with the above data, an attempt is made to predict deflections of the vertical in the same area. The method used in the computations is least squares collocation. Using empirical covariance functions for the data, the suitable errors for the different sources of observations, and the optimum cap radius around each point of evaluation, an accuracy better than±0.60m for geoidal heights and±1″.5 for deflections of the vertical is obtained taking into account existing systematic effects. This accuracy refers to the comparison between observed and predicted values.


Gravity Anomaly Geopotential Model Geoid Undulation Physical Geodesy Geoid Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. ARABELOS: Untersuchungen zur gravimetrischen Geoidbestimmung dargestellt am Testgebiet Griechenland. Wiss. Arb. Univ. Hann., Nr. 98, Dissertation, 1980.Google Scholar
  2. D. ARABELOS, L.N. MAVRIDIS and I.N. TZIAVOS: Gravimetric geoid determination for the area of Greece. Proc. IAU Symp. “Sun and Planetary System (eds. Fricke W. and G. Teleki)”. D. Reidel Publishing Co., pp. 203–204, 1982.Google Scholar
  3. D. ARABELOS and I.N. TZIAVOS: Determination of deflections of the vertical using a combination of spherical harmonics and gravity anomalies for the area of Greece. Bull. Géod., 57, pp. 240–256, 1983.CrossRefGoogle Scholar
  4. D. ARABELOS: Evaluation of deflections of the vertical using topographic-isostatic and astrogeodetic data for the area of Greece. Bull. Géod., 59, pp. 109–123, 1985.CrossRefGoogle Scholar
  5. D. BALODIMOS: Geoidal studies in Greece. Ph.D. thesis, Oxford, 1972.Google Scholar
  6. D. BALODIMOS: The Hellenic geoid on ED50. Paper presented at the Ist Int. Symp. “Geoid in Europe and Mediterranean Area”, pp. 39–49, Ancona, Italy, 1978.Google Scholar
  7. O.L. COLOMBO: Numerical methods for harmonic analysis on the sphere. Dept. of Geodetic Science. Rep. No. 310, Ohio State Univ., 1981.Google Scholar
  8. A. DERMANIS: Theory and application of collocation in surveying. Paper presented at seminario “Tecniche moderne di analysi dei dati geodetici con particolare riguardo alla collocazione”, pp. 37–67, Universita Di Bologna, 1983.Google Scholar
  9. A. DERMANIS. Signals in geodetic network. Paper presented at the Int. School of advanced geodesy “Design and Optimization of Geodetic Networks”, pp. 221–256, Erici, Trapani, Sicily, Italy, 1984.Google Scholar
  10. M. DOUFEXOPOULOU-PATSADA: Study to the local gravity field in the Hellenic area for geoid approximation. Ph. D. thesis (in Greek), Athens, 1985.Google Scholar
  11. T. EENGELIS, C.C. TSCHERNING and R.H. RAPP: The precise computation of geoid undulation differences with comparison to results obtained from GPS. Manuscripta Geodaetica, 10, pp. 187–194, 1985.Google Scholar
  12. R. FORSBERG. Local covariance functions and density distributions. Dept. of Geodetic Science, Rep. No. 356, Ohio State Univ., 1984.Google Scholar
  13. R. FORSBERG and C.C. TSCHERNING: Deflection and gravity anomaly prediction using collocation. Proceedings 2nd Int. Symp. “Inertial Techniques for Surveying and Geodesy”, pp. 89–105, Banff, Canada, 1981.Google Scholar
  14. A. FOTIOU, E. LIVIERATOS and I.N. TZIAVOS. Comparisons of the various representations of the geoid for the Hellenic area. IAG Int. Symp. “The Definition of the Geoid”, Florence, Italy, 1986.Google Scholar
  15. C.C. GOAD, C.C. TSCHERNING and M.M. CHIN: Gravity empirical covariance values for the continental United States. J. Geophys. Res., 89, pp. 1962–1968, 1984.CrossRefGoogle Scholar
  16. W. HEISKANEN and H. MORITZ Physical Geodesy W.H. Freeman, San Francisco, 1967.Google Scholar
  17. A.H.W. KEARSLEY. Non-stationary estimation in gravity prediction. Dept. of Geodetic Science, Rep. No. 165. Ohio State Univ., 1977.Google Scholar
  18. A.H.W. KEARSLEY, M.G. SIDERIS, Jan KRYNSKI, R. FORSBERG and K.P. SCHWARZ. White Sands revisited—A comparison of techniques to predict deflections of the vertical. UCSE Report #30007, Division of Surveying Engineering, The University of Calgary, Calgary, Alberta, 1985.Google Scholar
  19. T. KRARUP: A contribution to the mathematical foundation of physical geodesy. The Danish Geodetic Institute, Meddelelse, Nr. 44, 1969.Google Scholar
  20. G. LACHAPELLE and A. MAINVILLE: Evaluation of deflections of the vertical in mountainous areas using a combination of topographic-isostatic and astrogeodetic data. Collected papers, pp. 99–122, Geod. Survey, Dept. of Energy, Mines and Resources, Surveys and Mapping Branch, 1979.Google Scholar
  21. G. LACHAPELLE and C.C. TSCHERNING: Use of collocation for predicting geoid undulations and related quantities over large areas. Proc. of the 1st Int. Symp. “Geoid in Europe and the Mediterranean Area”, pp. 165–182, Ancona, Italy, 1978.Google Scholar
  22. S.L. LAURITZEN: The probabilistic background of some statistical methods in physical geodesy. The Danish Geodetic Institute, Meddelelse, No. 48, 1973.Google Scholar
  23. H. MORITZ: Least Square collocation. DGK, Reihe A, Nr. 75, 1973.Google Scholar
  24. H. MORITZ: Advanced physical geodesy. Herbert Wichmann Verlag, Karlsruhe, 1980.Google Scholar
  25. R.H. RAPP. The earth's gravity field to degree and order 180 using SEASAT altimeter data terrestrial gravity data, and other data. Dept. of Geodetic Science and Surveying Rep. No. 202, Ohio State Univ., 1981.Google Scholar
  26. R.H. RAPP. A Fortran program for the computation of gravimetric quantities from high degree spherical harmonic expansions. Dept. of Geodetic Science and Surveying, Rep. No. 334, Ohio State Univ., 1982.Google Scholar
  27. C. RIZOS. An efficient computer technique for the evaluation of the geopotential from spherical harmonic models. Aust. J. Geod. Photo. Surv., No. 30, pp. 161–169, 1979.Google Scholar
  28. R. RUMMEL: A model comparison in least squares collocation. Dept. of Geodetic Science, Rep. No. 238, Ohio State Univ., 1976.Google Scholar
  29. F. SANSÒ. The minimum mean square estimation error principle in physical geodesy. (Stochastic and nonstrochastic interpretation). Boll. Geod. Sci. Aff., No. 2, pp. 111–129, 1980.Google Scholar
  30. W. SCHLÜTER, P. WILSON and H. SEEGER: Final results of the EROS-Doppler observation campaign. Paper presented at XVII. IUGG Gen Ass., Canberra, Australia, 1979.Google Scholar
  31. K.P. SCHWARZ. Capabilities of airborne gradiometry for gravity estimation. Boll. Geod. Sci. Aff., No. 2, pp. 195–214, 1977.Google Scholar
  32. K.P. SCHWARZ and G. LACHAPELLE: Local characteristics of the gravity anomaly covariance function. Bull. Géod., 54, pp. 21–36, 1980.CrossRefGoogle Scholar
  33. K.P. SCHWARZ and M.G. SIDERIS: Precise geoid heights and their use in GPS-interferometry. Contract Report No. 85-004, Geodetic Survey of Canada, Department of Energy, Mines and Resources, Ottawa, Ontario, 1985.Google Scholar
  34. M.G. SIDERIS and K.P. SCHWARZ: Improvements of medium and short wavelength features of geopotential solutions by local data. Paper presented at the Int. Symp. on “The Definition of the Geoid”, Florence, 1986.Google Scholar
  35. H. SÜNKEL: The geoid in the Styrian test network. Proc. of the 2nd Int. Symp. “Geoid in Europe and the Mediterranean Area”, pp. 362–382, Rome, 1982.Google Scholar
  36. W. TORGE, G. WEBER and H.G. WENZEL: Determination of 12′×20′ mean free air gravity anomalies for the North Sea region. DGK, Reihe B, Nr. 247, 1980.Google Scholar
  37. C.C. TSCHERNING: Covariance expressions for second and lower order derivatives of the anomalous potential. Dept. of Geodetic Science, Rep. No. 225, Ohio State Univ., 1976a.Google Scholar
  38. C.C. TSCHERNING: Determination of datum shift parameters using least squares collocation. Boll. Geod. Sci. Aff., No. 2, pp. 173–183, 1976b.Google Scholar
  39. C.C. TSCHERNING: A note of the choice of norm when using collocation for the computation of approximation to the anomalous potential. Bull. Géod. 51, pp. 137–147, 1977.CrossRefGoogle Scholar
  40. C.C. TSCHERNING: Comparison of some methods for the detailed representation of the earth's gravity field. Rev. Geophys. Sp. Phys., 19, pp. 213–221, 1981.CrossRefGoogle Scholar
  41. C.C. TSCHERNING: Geoid determination for the Nordic countries using collocation. Proc. of the IAG Gen. Meeting, pp. 472–483, Tokyo, 1982.Google Scholar
  42. C.C. TSCHERNING: The role of the high degree spherical harmonic expansions in solving geodetic problems. Proc. of the IAG Symposium, pp. 431–444, Hamburg, 1983a.Google Scholar
  43. C.C. TSCHERNING Effects of the lack of adequate height and gravity data on the use of positions determined by space techniques in developing countries. Proc. of the IAG Symposium, pp. 658–670, Hamburg, 1983b.Google Scholar
  44. C.C. TSCHERNING and R.H. RAPP Closed covariance expressions for gravity anomalies, geoid undulations and deflections of the vertical implied by anomaly degree variance models. Dept. of Geod. Science, Rep. No. 108, Ohio State Univ., 1974.Google Scholar
  45. C.C. TSCHERNING and R. FORSBERG: Prediction of deflections of the vertical. Proc. of the 2nd Int. Symp. “Problems related to the Redefinition of North American Geodetic Networks”, pp. 117–134, Washington, 1978.Google Scholar
  46. C.C. TSCHERNING, R.H. RAPP and C.C. GOAD: A comparison of methods for computing gravimetric quantities from high degree spherical harmonic expansions. Manuscripta Geodaetica, 8, pp. 249–272, 1984.Google Scholar
  47. I.N. TZIAVOS: Study of the optimal combination of heterogeneous data on geoid determination with applications for the area of Greece. Ph. D. thesis (in Greek), Thessaloniki, 1984.Google Scholar
  48. I.N. TZIAVOS: Fehler-Kovarianzfunktionen und Modelle für Schwereanomalien und Kugelfunktionsentwicklungen. ZfV, Heft 9, pp. 417–429, 1986.Google Scholar
  49. H.G. WENZEL and D. ARABELOS: Zur Schätzung von Anomalie-Gradvarianzen aus lokalen empirischen Kovarianzfunktionen. ZfV, 106, pp. 234–243, 1981.Google Scholar

Copyright information

© Bureau Central de L’Association Internationale de Géodésie 1987

Authors and Affiliations

  • I. N. Tziavos
    • 1
  1. 1.Department of Geodesy and SurveyingUniversity of ThessalonikiThessalonikiGreece

Personalised recommendations