Journal of Geodesy

, Volume 59, Issue 2, pp 189–199 | Cite as

On the meaning of geodetic orientation

  • T. Vincenty


After deriving models for changes of coordinates and azimuths due to rotations, the investigation considers methods for modeling terrestrial orientation in adjustments of geodetic networks. If a misorientation of a geodetic network exists, this can be due to systematic errors in astronomic longitude or in astronomic azimuth, or in both. A separation of these two effects is not possible in practice. The initial azimuth at the datum origin contributes to the orientation only as much as any other azimuth of the same weight.


Azimuth Rotation Angle Astronomic Observation Geodetic Network Geodetic Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V. ASHKENAZI, 1981: Models for controlling national and continental networks.Bull. Géod., Vol. 55, No. 1, pp. 49–58.CrossRefGoogle Scholar
  2. F. BAESCHLIN, 1952: Communication on Laplace's equation.Bull. Géod. No. 24.Google Scholar
  3. E. GRAFAREND and B. RICHTER, 1977: The generalized Laplace condition.Bull. Géod., Vol. 51, No. 4, pp. 287–293.CrossRefGoogle Scholar
  4. M.S. MOLODENSKII, V.F. EREMEEV, M.I. YURKINA, 1962:Methods for study of the external gravitational field and the figure of the earth. Israel Program for Scientific Translations, Jerusalem.Google Scholar
  5. M. PICK, J. PICHA, V. VYSKOČIL, 1973:Theory of the earth's gravity field. Elsevier.Google Scholar
  6. R.R. STEEVES, 1984: Mathematical models for use in the readjustment of the North American geodetic networks. Technical Report No. 1, Geod. Survey of Canada.Google Scholar
  7. P. VANIČEK and D.E. WELLS, 1974: Positioning of geodetic datums.The Canadian Surveyor, Vol. 28, No. 5, pp. 531–538.Google Scholar
  8. F.A. VENING MEINESZ, F. BAESCHLIN, M. HOTINE, 1951: New formulas for systems of deflections of the plumb-line and Laplace's theorem. (Discussion.)Bull. Géod. No. 19.Google Scholar
  9. F.A. VENING MEINESZ, 1953: L'équation de Laplace.Bull. Géod. No. 27.Google Scholar
  10. T. VINCENTY, 1980: Height-controlled three-dimensional adjustment of horizontal networks.Bull. Géod., Vol. 54, No. 1, pp. 37–43.CrossRefGoogle Scholar
  11. T. VINCENTY, 1982: Methods of adjusting space systems data and terrestrial measurements.Bull. Géod., Vol. 56, No. 3, pp. 231–241.CrossRefGoogle Scholar
  12. T. VINCENTY and B.R. BOWRING, 1978: Application of three-dimensional geodesy to adjustments of horizontal networks. NOAA Technical Memorandum NOS NGS-13.Google Scholar
  13. D.E. WELLS and P. VANIČEK, 1975: Alignment of geodetic and satellite coordinate systems to the average terrestrial system.Bull. Géod., No. 117, pp. 241–257.CrossRefGoogle Scholar
  14. H. WOLF, 1980: Scale and orientation in combined doppler and triangulation nets.Bull. Géod., Vol. 54, No. 1, pp. 45–53.CrossRefGoogle Scholar
  15. H. WOLF, 1963: Die Grundgleichungen der dreidimensionalen Geodäsie in elementarer Darstellung.Zeitschr. f. Vermess., Vol. 88, No. 6, pp. 225–233.Google Scholar

Copyright information

© Bureau Central de L'Associationale Internationale de Géodésie 1985

Authors and Affiliations

  • T. Vincenty
    • 1
  1. 1.Charting and Geodetic Services, NOS, NOAANational Geodetic SurveyRockvilleUSA

Personalised recommendations