Advertisement

Advances in Computational Mathematics

, Volume 2, Issue 1, pp 123–142 | Cite as

Helix splines as an example of affine Tchebycheffian splines

  • Helmut Pottmann
  • Michael G. Wagner
Article

Abstract

The present paper summarizes the theory of affine Tchebycheffian splines and presents an interesting affine Tchebycheffian free-form scheme, the “helix scheme”. The curve scheme provides exact representations of straight lines, circles and helix curves in an arc length parameterization. The corresponding tensor product surfaces contain helicoidal surfaces, surfaces of revolution and patches on all types of quadrics. We also show an application to the construction of planarC 2 motions interpolating a given set of positions. Because the spline curve segments are calculated using a subdivision algorithm, many algorithms, which are of fundamental importance in the B-spline technique, can be applied to helix splines as well. This paper should demonstrate how to create an affine free-form scheme fitting to certain special applications.

Keywords

Free-form curve B-spline Tchebycheffian spline blossoming tensor product surface screw motion helix helicoidal surface quadric surface motion design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Blaschke,Vorlesungen über Differentialgeometrie II: Affine Differentialgeometrie (Springer, Berlin, 1923).Google Scholar
  2. [2]
    O. Bottema and B. Roth,Theoretical Kinematics (North-Holland, Amsterdam, 1979).zbMATHGoogle Scholar
  3. [3]
    M. Eck, MQ-curves are curves in tension, in:Mathematical Methods in CAGD and Image Processing, ed. T. Lyche and L.L. Schumaker (Academic Press, Boston, 1992).Google Scholar
  4. [4]
    G. Farin,Curves and Surfaces for Computer Aided Geometric Design, 2nd ed. (Academic Press, 1990).Google Scholar
  5. [5]
    R.T. Farouki and T. Sakkalis, Real rational curves are not “unit speed”, Comp. Aided Geom. Design 8(1991)151–157.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Q.J. Ge and B. Ravani, Computer aided geometric design of motion interpolants,Proc. 1991 ASME Design Automation Conf., DE-Vol. 32–2 (1991) pp. 33–41.Google Scholar
  7. [7]
    H. Horninger, Über Radlinien und Zykloidenn-ter Stufe, Monatsh. Math. 72(1968)335–346.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    O. Haupt and H. Künneth,Geometrische Ordnungen (Springer, Berlin/Heidelberg, 1967).zbMATHGoogle Scholar
  9. [9]
    J. Hoschek and D. Lasser,Grundlagen der geometrischen Datenverarbeitung, 2nd ed. (Teubner, Stuttgart, 1992).zbMATHGoogle Scholar
  10. [10]
    S. Karlin and W.J. Studden,Tchebycheff Systems. With Applications in Analysis and Statistics (Wiley-Interscience, New York, 1966).zbMATHGoogle Scholar
  11. [11]
    P.E. Koch and T. Lyche, Exponential B-splines in tension, in:Approximation Theory, ed. C.K. Chui, L.L. Schumaker and J.D. Ward (Academic Press, New York, 1989), pp. 361–364.Google Scholar
  12. [12]
    P.E. Koch and T. Lyche, Construction of exponential tension B-splines of arbitrary order, in:Curves and Surfaces, ed. P.J. Laurent, A. LeMéhauté and L.L. Schumaker (Academic Press, Boston, 1991) pp. 255–258.Google Scholar
  13. [13].
    P.E. Koch and T. Lyche, Interpolation with exponential B-splines in tension, in:Geometric Modeling, ed. G. Farin et al. (Computing/Suppl. 8, 1993).Google Scholar
  14. [14]
    S. Mick and O. Röschel, Interpolation of helical patches by kinematic rational Bézier patches, Comp. Graphics 14(1990)275–280.CrossRefGoogle Scholar
  15. [15]
    H. Pottmann and T.D. DeRose, Classification using normal curves, in:Curves and Surfaces in Computer Vision and Graphis II, SPIE Proc. 1610(1991)217–228.Google Scholar
  16. [16]
    H. Pottmann, The geometry of Tchebycheffian splines, Comp. Aided. Geom. Design 10(1993) 181–210.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    F.P. Preparata and M.I. Shamos,Computational Geometry (Springer, New York, 1985).zbMATHGoogle Scholar
  18. [18]
    L. Ramshaw, Blossoms are polar forms, Comp. Aided Geom. Design 6(1989)323–358.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    K. Shoemake, Animating rotation with quaternion curves,ACM Siggraph Vol. 19(1985) pp. 245–254.CrossRefGoogle Scholar
  20. [20]
    L.L. Schumaker,Spline Functions: Basic Theory (Wiley-Interscience, New York, 1981).Google Scholar
  21. [21]
    H.P. Seidel, Knot insertion from a blossoming point of view, Comp. Aided Geom. Design 5(1988) 81–86.zbMATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    H.P. Seidel, A new multiaffine approach to B-splines, Comp. Aided Geom. Design 6(1989)23–32.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    H.P. Seidel, New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree, Math. Mod. Numer. Anal. 26(1992)149–176.zbMATHMathSciNetGoogle Scholar
  24. [24]
    M.C. Stone and T.D. DeRose, A geometric characterization of cubic curves, ACM Trans. Graphics 8(1989)143–163.CrossRefGoogle Scholar
  25. [25]
    M.G. Wagner and H. Pottmann, Rational B-spline motions, to be published.Google Scholar
  26. [26]
    W. Wunderlich,Ebene Kinematik (Bibliographisches Institut, Mannheim/Wien/Zürich (1970).zbMATHGoogle Scholar
  27. [27]
    W. Wunderlich, Ein vierdimensionales Abbildungsprinzip für ebene Bewegungen, ZAMM 66(1986) 421–428.zbMATHMathSciNetGoogle Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Helmut Pottmann
    • 1
  • Michael G. Wagner
    • 1
  1. 1.Institut für GeometrieTechnische Universität WienWienAustria

Personalised recommendations