Medical and Biological Engineering and Computing

, Volume 36, Issue 6, pp 778–790 | Cite as

Cultivation of human keratinocyte stem cells: current and future clinical applications

  • G. Pellegrini
  • S. Bondanza
  • L. Guerra
  • M. De Luca
Cellular Engineering: Bioengineering of the Skin


Cultured human keratinocytes have a wide spectrum of clinical applications. Clinical results reported by several investigators are, however, contradictory. In this review, the authors discuss the biological and surgical issues which play a key role in the clinical outcome of cultured epidermal autografts used for the treatment of massive full-thicknes burns. The importance of cultivation of epidermal stem cells and of their transplantation onto a wound bed prepared with donor dermis is emphasised. The paper also reviews recent data showing that: (i) cultured epidermal autografts bearing melanocytes can be used for the treatment of stable vitiligo; (ii) keratinocytes isolated from other lining epithelia, such as oral, urethral and corneal epithelia, can be cultivated and grafted onto patients suffering from disabling epithelial defects; (iii) keratinocyte stem cells can be stably transduced with retroviral vectors and are therefore attractive targets for the gene therapy of genodermatoses.


Keratinocyte Stern cell Skin Epidermis Burns Gene therapy Genodermatoses Melanocyte Vitiligo Tissue engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberdam, D., Galliano, M.-F., Vailly, J., Pulkkinen, L., Bonifas, J., Christiano, A. M., Tryggvason, K., Uitto, J., Epstein, E. H., Ortonne, J. P., andMeneguzzi, G. (1994): ‘Herlitz's junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the γ2 subunit of nicein/kalinin (LAMININ-5)’,Nat. Genet.,6, pp. 299–304CrossRefGoogle Scholar
  2. Adams, J. C., andWatt, F. M. (1990): ‘Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes α5β1 integrin loss from the cell surface’,Cell,63, pp. 425–435CrossRefGoogle Scholar
  3. Agrawal, K., andAgrawal, A. (1995): ‘Vitiligo: repigmentation with dermabrasion and thin split-thickness skin graft’,Dermatol. Surg.,21, pp. 295–300CrossRefGoogle Scholar
  4. Alperin, E. S., andShapiro, L. J. (1997): ‘Characterization of point mutations in patients with X-linked ichthyosis. Effects on the structure and function of the steroid sulfatase protein’,J. Biol. Chem.,272, pp. 20756–20763CrossRefGoogle Scholar
  5. Aubock, J., Irschick, E., Romani, N., Kompatscher, P., Hopfl, R., Bauer, M., Huber, C., andFritsch, P. (1987): ‘Autologous versus allogenic cultivated epidermis for wound dressing’inTeepe, R. G. C. (Ed.) ‘Clinical use of cultured epithelium in surgery and dermatology’ (Medical & Scientific Conferences Ltd., Wheathampstead, UK), pp. 59–64Google Scholar
  6. Aubock, J., Irschick, E., Romani, N., Kompatscher, P., Hopfl, R., Herold, M., Schuler, G., Bauer, M., Huber, C., andFritsch, P. (1988): ‘Rejection, after a slightly prolonged survival time, of Langerhans cell-free allogenic cultured epidermis used for wound coverage in humans’Transplantation,45, pp. 730–737Google Scholar
  7. Barrandon, Y., andGreen, H. (1985): ‘Cell size as a determinant of the clone-forming ability of human keratinocytes’,Proc. Natl. Acad. Sci. USA,82, pp. 5390–5394CrossRefGoogle Scholar
  8. Barrandon, Y., andGreen, H. (1987a): ‘Three clonal types of keratinocytes with different capacities for multiplication’,Proc. Natl. Acad. Sci. USA,84, pp. 2302–2306CrossRefGoogle Scholar
  9. Barrandon, Y., andGreen, H. (1987b): ‘Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-α and epidermal growth factor’,Cell,50, pp. 1131–1137CrossRefGoogle Scholar
  10. Barrandon, Y., Li, V., andGreen, H. (1988): ‘New techniques for the grafting of cultured epidermal cells onto athymic animals’,J. Invest. Dermatol.,91, pp. 315–318CrossRefGoogle Scholar
  11. Barrandon, Y. (1993): ‘The epidermal stem cell: an overview’,Dev. Biol.,4, pp. 209–215CrossRefGoogle Scholar
  12. Behl, P. N. (1964): ‘Treatment of vitiligo with homologous thin Thiersch skin grafts’,Curr. Med. Pract.,8, pp. 218–221Google Scholar
  13. Blanton, R. A., Kupper, T. S., McDougall, J. K., andDower, S. (1989): ‘Regulation of interleukin 1 and its receptor in human keratinocytes’,Proc. Natl. Acad. Sci. USA,86, pp. 1273–1277CrossRefGoogle Scholar
  14. Boersma, B. R., Westerhof, W., andBos, J. D. (1995): ‘Repigmentation in vitiligo vulgaris by autologous minigrafting: results in nineteen patients’,J. Am. Acad. Dermatol.,33, pp. 990–995CrossRefGoogle Scholar
  15. Boissy, R. E., andNordlund, J. J. (1997): ‘Molecular basis of congenital hypopigmentary disorders in humans: a review’,Pigment. Cell Res.,10, pp. 12–24CrossRefGoogle Scholar
  16. Borradori, L., andSonnenberg, A. (1996): ‘Hemidesmosomes: roles in adhesion, signaling and human diseases’,Curr. Opin. Cell Biol.,8, pp. 647–656CrossRefGoogle Scholar
  17. Burgeson, R. E. (1993): ‘Type VII collagen, anchoring fibrils and epidermolysis bullosa’,J. Invest. Dermatol.,101, pp. 252–255CrossRefGoogle Scholar
  18. Burt, A. M., Pallet, C. D., Sloane, J. P., O'Hare, M. J., Schafler, K. F., Yardeni, P., Eldad, A., Clarke, J. A., andGusterson, B. A. (1989): ‘Survival of cultured allografts in patients with burns assessed with probe specific for Y chromosome’,Br. Med. J.,298, pp. 915–917CrossRefGoogle Scholar
  19. Carroll, J. M., Romero, M. R., andWatt, F. M. (1995): ‘Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling proriasis’,Cell,83, pp. 957–968CrossRefGoogle Scholar
  20. Chen, W. Y., Mui, M. M., Kao, W. W., Liu, C. Y., andTseng, S. C. G. (1994): ‘Conjunctival epithelial cells do not transdifferentiate in organotypic cultures: expression of K12 keratin is restricted to corneal epithelium’,Curr. Eye Res.,13, pp. 765–778Google Scholar
  21. Choate, K. A., Kinsella, T. M., Williams, M. L., Nolan, G. P. andKhavari, P. A. (1996a): ‘Transglutaminase 1 delivery to lamellar ichthyosis keratinocytes’,Hum. Gen. Ther.,7, pp. 2247–2253Google Scholar
  22. Choate, K. A., Medalie, D. A., Morgan, J. R., andKhavari, P. A. (1996b): ‘Corrective gene transfer in the human skin disorder lamellar ichthyosis’,Nat. Med.,2, pp. 1263–1267CrossRefGoogle Scholar
  23. Choate, K. A., andKhavari, P. A. (1997): ‘Sustainability of keratinocyte gene transfer and cell survival in vivo’,Hum. Gen. Ther.,8, pp. 895–901Google Scholar
  24. Christiano, A. M., andUitto, J. (1996): ‘Molecular complexity of the cutaneous basement membrane zone. Revelations from the paradigms of epidermolysis bullosa’,Exp. Dermatol.,5, pp. 1–11CrossRefGoogle Scholar
  25. Christiano, A. M., D'Alessio, M., Paradisi, M., Angelo, C., Mazzanti, C., Puddu, P., andUitto, J. (1996a): ‘A common insertion mutation in COL7A1 in two Italian families with recessive dystrophic epidermolysis bullosa’,J. Invest. Dermatol.,106, pp. 679–684CrossRefGoogle Scholar
  26. Christiano, A. M., Anton-Lamprecht, I., Amano, S., Ebschner, U., Burgeson, R. E., andUitto, J. (1996b): ‘Compound heterozygosity for COL7A1 mutations in twins with dystrophic epidermolysis bullosa: a recessive paternal deletion/insertion mutation and a dominant negative maternal glycine substitution result in a severe phenotype’,Am. J. Hum. Genet.,58, pp. 682–693Google Scholar
  27. Christiano, A. (1997): ‘Frontiers in keratodermas: pushing the envelope’,Trend Genet.,13, pp. 227–233CrossRefGoogle Scholar
  28. Coffey, Jr., R. J., Derynck, R., Wilcox, J. N., Bringman, T. S., Goustin, A. S., Moses, H. L., andPittelkow, M. R. (1987): ‘Production and auto-induction of transforming growth factor-α in human keratinocytes’,Nature,328, pp. 817–820CrossRefGoogle Scholar
  29. Coleman, J. W. (1981): ‘The bladder mucosal graft technique for hypospadias repair’,J. Urol.,125, pp. 708–710Google Scholar
  30. Compton, C. C., Gill, J. M., Bradford, D. A., Regauer, S., Gallico, G. G., andO'Connor, N. E. (1989): ‘Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study’,Lab. Invest.,60, pp. 600–612Google Scholar
  31. Compton, C. C., Hickerson, W., Nadire, K., andPress, W. (1993): ‘Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis’,J. Burn Care Rehab.,14, pp. 653–662CrossRefGoogle Scholar
  32. Cordon, L. D., andMcLean, W. H. I. (1996): ‘Human keratin diseases: hereditary fragility of specific epithelial tissues’Exp. Dermatol.,5, pp. 297–307CrossRefGoogle Scholar
  33. Cotsarelis, G., Cheng, S. Z., Dong, G., Sun, T.-T., andLavker, R. M. (1989): ‘Existence of slow cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells’,Cell,57, pp. 201–209CrossRefGoogle Scholar
  34. Cotsarelis, G., Sun, T.-T., andLavker, R. M. (1990): ‘Labelretaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis’,Cell,61, pp. 1329–1337CrossRefGoogle Scholar
  35. Cuono, C., Langdon, R., andMcGuire, J. (1986): ‘Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury’,Lancet,i, pp. 1123–1124CrossRefGoogle Scholar
  36. Cuono, C. B., Langdon, R., Birchall, N., Barttelbort, S., andMcGuire, J. (1987): ‘Composite autologous-allogenic skin replacement: development and clinical application’,Plast. Reconstr. Surg.,80, pp. 626–635Google Scholar
  37. Dellambra, E., Vailly, J., Pellegrini, G., Bondanza, S., Golisano, O., Macchia, C., Zambruno, G., Meneguzzi, G., andDe Luca, M. (1998): ‘Corrective transduction of human epidermal stem cells in laminin-5-dependent junctional epidermolysis bullosa’,Hum. Gene Ther.,9, pp. 1359–1370Google Scholar
  38. De Luca, M., Franzi, A. T., D'Anna, F., Zicca, A., Albanese, E., Bondanza, S., andCancedda, R. (1988a): ‘Coculture of human keratinocytes and melanocytes: differentiated melanocytes are physiologically organized in the basal layer of the cultured epithelium’,Eur. J. Cell Biol.,46, pp. 176–180Google Scholar
  39. De Luca, M., D'Anna, F., Bondanza, S., Franzi, A. T., andCancedda, R. (1988b): ‘Human epithelial cells induce human melanocyte growthin vitro but only skin keratinocytes regulate its proper differentiation in the absence of dermis’,J. Cell Biol.,107, pp. 1919–1926CrossRefGoogle Scholar
  40. De Luca, M., Albanese, E., Bondanza, S., Megna, M., Ugozzoli, L., Molina, F., Cancedda, R., Santi, P. L., Bormioli, M., Stella, M., andMagliacani, G. (1989): ‘Multicentre experience in the treatment of burns with autologous and allogenic cultured epithelium, fresh or preserved in a frozen state’,Burns,15, pp. 303–309CrossRefGoogle Scholar
  41. De Luca, M., Albanese, E., Megna, M., Cancedda, R., Mangiante, P. E., Cadoni, A., andFranzi, A. T. (1990a): ‘Evidence that human oral epithelium reconstituted in vitro and transplanted onto patients with defects in the oral mucosa retains properties of the original donor site’,Transplantation,50, pp. 454–459CrossRefGoogle Scholar
  42. De Luca, M., Tamura, R. N., Kajiji, S., Bondanza, S., Rossino, P., Cancedda, R., Marchisio, P. C., andQuaranta, V. (1990b): ‘Polarized integrin mediates human keratinocyte adhesion to basal lamina’,Proc. Natl. Acad. Sci. USA,87, pp. 6888–6892CrossRefGoogle Scholar
  43. De Luca, M., Bondanza, S., Cancedda, R., Tamisani, A. M., Di Noto, C., Muller, L., Dioguardi D., Brienza, E., Calvario, A., Zermani, R., Di Mascio, D., andPapadia, F. (1992a): ‘Permanent coverage of full skin thickness burns with autologous cultured epidermis and reepithelization of partial skin thickness lesions induced by allogenic cultured epidermis: a multicentre study in the treatment of children’,Burns,88 (suppl. 1), pp. S16-S19Google Scholar
  44. De Luca, M., Albanese, E., Cancedda, R., Viacava, A., Faggioni, A., Zambruno, G., andGiannetti, A. (1992b) ‘Treatment of leg ulcers with cryopreserved allogenic cultured epithelium’,Arch. Dermatol.,128, pp. 633–638CrossRefGoogle Scholar
  45. De Luca, M., andCancedda, R. (1992): ‘Culture of human epithelium’,Burns,18 (suppl. 1), pp. S5-S10Google Scholar
  46. De Luca, M., Bondanza, S., Di Marco, E. Marchisio, P. C., D'Anna, F., Franzi, A. T., andCancedda, R. (1994): ‘Keratinocyte-melanocyte interactions inin vitro reconstituted normal human epidermis’,inLeigh, I., Lane, B., andWatt, F. (Eds.): ‘The keratinocyte handbook’ (Cambridge University Press), pp. 95–108.Google Scholar
  47. De Luca, M., andPellegrini, G. (1997): ‘The importance of epidermal stem cells in keratinocyte-mediated gene therapy’,Gene Ther.,4, pp. 381–383CrossRefGoogle Scholar
  48. Devine Jr, C. J., andHorton, C. E. (1977): ‘Hypospadias repair’,J. Urol.,118, pp. 188–193Google Scholar
  49. Di Marco, E., Marchisio, P. C., Bondanza, S., Franzi, A. T., Cancedda, R., andDe Luca, M. (1991): ‘Growth-regulated synthesis and secretion of biologically active nerve growth factor by human keratinocytes’,J. Biol. Chem.,266, pp. 21718–21722Google Scholar
  50. Di Marco, E., Mathor, M., Bondanza, S., Cutuli, N., Marchisio, P. C., Cancedda, R., andDe Luca, M. (1993): ‘Nerve growth factor binds to normal human keratinocytes through high and low affinity receptors and stimulates their growth by a novel autocrine loop’,J. Biol. Chem.,268, pp. 22838–22846Google Scholar
  51. Di Persio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A., andHynes, R. O. (1997): ‘α3β1 integrin is required for normal development of the epidermal basement membrane’,J. Cell Biol.,137, pp. 729–742CrossRefGoogle Scholar
  52. Dowling, J., Yu, Q.-C., andFuchs, E. (1996): ‘β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival’,J. Cell. Biol.,134, pp. 559–572CrossRefGoogle Scholar
  53. Dua, H., andForrester, J. V. (1990): ‘The corneoscleral limbus in human corneal wound healing’,Am. J. Ophthalmol.,110, pp. 646–656Google Scholar
  54. Duckett, J. W. (1987): ‘Hypospadias’,inGillenwater, J. Y., Grayhack, J. T., Howards, S. S., andDuckett, J. W. (Eds.): ‘Adult and pediatric urology’ (Year Book Medical, Chicago),2, pp. 1880–1915Google Scholar
  55. Eldad, A., Burt, A., andClarke, J. A. (1987): ‘Cultured epithelium as a skin substitute’,Burns,13, pp. 173–180CrossRefGoogle Scholar
  56. Epstein Jr, E. H. (1992): ‘Molecular genetics of epidermolysis bullosa’,Science,256, pp. 799–803CrossRefGoogle Scholar
  57. Fabre, J. W., andCullen, P. R. (1989): ‘Rejection of cultured keratinocyte allografts in the rat. Clinical implications and a possible clue to the enigma of skin graft rejection’,Transplantation,48, pp. 306–315CrossRefGoogle Scholar
  58. Falabella, R. (1971): ‘Epidermal grafting: an original technique and its application in achromic and granulating areas’,Arch. Dermatol.,104, pp. 592–600CrossRefGoogle Scholar
  59. Falabella, R. (1988): ‘Treatment of localized vitiligo by autologous minigrafting’,Arch. Dermatol.,124, pp. 1649–1655CrossRefGoogle Scholar
  60. Falabella, R., Escobar, C., andBorrero, I. (1989): ‘Transplantation ofin vitro cultured epidermis bearing melanocytes for repigmenting vitiligo’,J. Am. Acad. Dermatol.,21, pp. 257–264Google Scholar
  61. Falabella, R., Escobar, C., andBorrero, I. (1992): ‘Treatment of refractory and stable vitiligo by transplantation ofin vitro cultured epidermal autografts bearing melanocytes’,J. Am. Acad. Dermatol.,26, pp. 230–236Google Scholar
  62. Falabella, R., Barona, M. J., Escobar, C., Borrero, I., andArrunategui, A. (1995): ‘Surgical combination therapy for vitiligo and piebaldism’,Dermatol. Surg.,21, pp. 852–857CrossRefGoogle Scholar
  63. Faure, M., Mauduit, G., Schmitt, D., Kanitakis, J., Demidem, A., andThivolet, J. (1987): ‘Growth and differentiation of human epidermal cultures used as auto-and allografts in humans’,Br. J. Dermatol.,116, pp. 161–170CrossRefGoogle Scholar
  64. Fenjves, E. S. (1994): ‘Approaches to gene transfer in keratinocytes’,J. Invest. Dermatol.,103, pp. 70S-75SCrossRefGoogle Scholar
  65. Fenjves, E. S., Schwartz, P. M., Blaese, R. M., andTaichman, L. M. (1997): ‘Keratinocyte gene therapy for adenosine deaminase deficiency: a model approach for inherited metabolic disorders’.Hum. Gene Ther.,8, pp. 911–917Google Scholar
  66. Fine, J.-D., Bauer, E. A., Briggman, R. A., Carter, D. M., Eady, R. A. J., Esterly, N. B., Holbrook, K. A., Hurwitz, S., Johnson, L., Lin, A., Pearson, R., andSybert, V. P. (1991): ‘Revised clinical and laboratory criteria for subtypes of epidermolysis bullosa. A consensus report by the subcommittee on diagnosis and classifications of the National Epidermolysis Bullosa Registry’,J. Am. Acad. Dermatol.,24, pp. 119–135Google Scholar
  67. Flowers, M. E. D., Stockschlaeder, M. A. R., Schuening, F. G., Niederwieser, D., Hackman, R., Miller, A.D., andStorb, R. (1990): ‘Long-term transplantation of canine keratinocytes made resistant to G418 through retrovirus-mediated gene transfer’,Proc. Natl. Acad. Sci. USA,87, pp. 2349–2353CrossRefGoogle Scholar
  68. Freiberg, R. A., Choate, K. A., Deng, H., Alperin, E. S., Shapiro, L. J., andKhavari, P. A. (1997): ‘A model of corrective gene transfer in X-linked ichthyosis’,Hum. Mol. Genet.,6, pp. 927–933CrossRefGoogle Scholar
  69. Friend, J., andKenyon, K. R. (1987): ‘Physiology of the conjunctiva: metabolism and biochemistry’inSmolin, G., Thoft, R. A. (Eds.): ‘The cornea. Scientific foundation and clinical practice’ (Little Brown, Boston), pp. 16–38Google Scholar
  70. Fuchs, E. (1990): ‘Epidermal differentiation: the bare essentials’,J. Cell. Biol.,111, pp. 2807–2814CrossRefGoogle Scholar
  71. Fuchs, E. (1992): ‘Genetic skin disorders of keratin’,J. Invest. Dermatol.,99, pp. 671–674CrossRefGoogle Scholar
  72. Gallico, G. G., O'Connor, N. E., Compton, C. C., Kehinde, C., andGreen, H. (1984): ‘Permanent coverage of large burn wounds with autologous cultured human epithelium’,New Engl. J. Med.,311, pp. 448–451CrossRefGoogle Scholar
  73. Gallico, G. G., O'Connor, N. E., Compton, C. C., Remensnyder, J. P., Kehinde, O., andGreen, H. (1989): ‘Cultured epithelial autografts for congenital nevi’,Plast. Reconstr. Surg.,84, pp. 1–9CrossRefGoogle Scholar
  74. Garlick, J. A., Katz, A. B., Fenjves, E. S., andTaichman, L. B. (1991): ‘Retrovirus-mediated transduction of cultured epidermal keratinocytes’,J. Invest. Dermatol.,97, pp. 824–829CrossRefGoogle Scholar
  75. Georges-Labouesse, E., Messaddeq, N., Yehia, G., Cadalbert, L., Dierich, A., andLe Meur, M. (1996): ‘Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice’,Nat. Genet.,13, pp. 370–373CrossRefGoogle Scholar
  76. Gerrard, A. J., Hudson, D. L., Brownlee, G. G., andWatt, F. M. (1993): ‘Towards gene therapy for haemophilia B using primary human keratinocytes’,Nat. Genet.,3, pp. 180–183CrossRefGoogle Scholar
  77. Giancotti, F. G. (1996): ‘Signal transduction by the α6β4 integrin: charting the path between laminin binding and nuclear events’,J. Cell Sci.,109, pp. 1165–1172Google Scholar
  78. Gielen, V., Faure, M., Mauduit, G., andThivolet, J. (1987): ‘Progressive replacement of human cultured epithelial allografts by recipient cells as evidenced by HLA class I antigen expression’,Dermatologica,175, pp. 166–170CrossRefGoogle Scholar
  79. Goulmy, E., Van Els, C., De Bueger, M., Kempenaar, J., Ponec, M., andVan Rood, J. J. (1989): ‘Evidence for minor histocompatibility antigen expression in human skin’,Bone Marrow Transplant,4, p. 117Google Scholar
  80. Green, H., Kehinde, O., andThomas, J (1979): ‘Growth of cultured human epidermal cells into multiple epithelia suitable for grafting’,Proc. Natl. Acad. Sci. USA,76, pp. 5665–5668CrossRefGoogle Scholar
  81. Green, H. (1980): ‘The keratinocyte as differentiated cell type’, The Harvey Lectures, Series74, pp. 101–139Google Scholar
  82. Greenhalgh, D. A., Rothnagel, J. A., andRoop, D. (1994): ‘Epidermis: an attractive target tissue for gene therapy’,J. Invest. Dermatol.,103, pp. 63S-69SCrossRefGoogle Scholar
  83. Grimes, P. E. (1993): ‘Vitiligo. An overview of therapeutic approaches’,Dermatol. Clin.,11, pp. 325–337Google Scholar
  84. Halaban, R., Langdon, R., Birchall, N., Cuono, C., Baird, A., Scott, G., Moellmann, G., andMcGuire, J. (1988): ‘Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes’,J. Cell Biol.,107, pp. 1611–1619CrossRefGoogle Scholar
  85. Hann, S. K., Im, S., Bong, H. W., andPark, Y.-K. (1995): ‘Treatment of stable vitiligo with autologous epidermal grafting and PUVA’,J. Am. Acad. Dermatol.,32, pp. 943–948CrossRefGoogle Scholar
  86. Hansbrough, J. F., Morgan, J., Greenleaf, G., Parikh, M., Nolte, C., andWilkins, L. (1994): ‘Evaluation of Graftskin* composite grafts on full-thickness wounds on athymic mice’,J. Burn Care Rehab.,15, pp. 346–353CrossRefGoogle Scholar
  87. Herzog, S. R., Meyer, A., Woodley, D., andPeterson, H. D. (1988): ‘Wound coverage with cultured autologous keratinocytes: use after butn wound excision, including biopsy follow-up’,J. Trauma,28, pp. 195–198Google Scholar
  88. Hickerson, W., andCompton, C. C. (1991): ‘The use of cultured epidermal autografts over dermal allografts to close major burn wounds (abstr),’Proc. Am. Burn Assoc.,23, p. 7Google Scholar
  89. Hickerson, W. L., Compton, C. C., Fletchall, S., andSmith, L. R. (1994): ‘Cultured epidermal autografts and allodermis combination for permanent burn wound coverage’,Burns,20, (suppl 1), pp. S52-S56CrossRefGoogle Scholar
  90. Huber, M., Rettler, I., Bernasconi, K., Frenk, E., Lavrijsen, S. P., Ponec, M., Bon, A., Lautenschlager, S., Schorderet, D.F., andHohl, D. (1995): ‘Mutations of keratinocyte transglutaminase in lamellar ichthyosis’,Science,267, pp. 525–528CrossRefGoogle Scholar
  91. Hynes, R. O. (1992): ‘Integrins: versatility, modulations, and signaling in cell adhesion’,Cell,69, pp. 11–25CrossRefGoogle Scholar
  92. Jensen, T. G., Birk-Jensen, U., Jensen, P. K. A., Ibsen, H. H., Brandrup, F., Ballabio, A., andBolund, L. (1993): ‘Correction of steroid sulfatase deficiency by gene transfer into basal cells of tissue-cultured epidermis from patients with recessive X-linked ichthyosis’,Exp. Cell Res.,209, pp. 392–397CrossRefGoogle Scholar
  93. Jensen, U. B., Jensen, T. G., Jensen, P. K. A., Rygaard, J., Hensen, B. S., Fogh, J., Kolvraa, S., andBolund, L., (1994): ‘Gene transfer into cultured human epidermis and its transplantation onto immunodeficient mice: an experimental model for somatic gene therapy’,J. Invest. Dermatol.,103, pp. 391–394CrossRefGoogle Scholar
  94. Jones, P. H., andWatt, F. M. (1993): ‘Separation of human epidermal stem cells from transient amplifying cells on the basis of differences in integrin function and expression’,Cell,73, pp. 713–724CrossRefGoogle Scholar
  95. Jonker, M., Hoogeboom, J., Van Leeuwen, A., Koch, C. T., Van Oud-Alblas, D. B., andVan Rood, J. J. (1979): ‘Influence of matching for HLA-DR antigens on skin graft survival’,Transplantation,27, pp. 91–94CrossRefGoogle Scholar
  96. Kahn, A. M., Cohen, M. J., Kaplan, L., andHighton, A. (1993): ‘Vitiligo: treatment by dermoabrasion and epithelial sheet grafting—a preliminary report’,J. Am. Acad. Dermatol.,28, pp. 773–774Google Scholar
  97. Kahn, A. M., andCohen, M. J. (1995): ‘Vitiligo: treatment by dermoabrasion and epithelial sheet grafting’,J. Am. Acad. Dermatol.,33, pp. 646–648CrossRefGoogle Scholar
  98. Kane, C. J. M., Hanawait, P. C., Knapp, A. M., andMansbridge, J. N. (1989): ‘Biphasic appearance of transforming growth factor-β in wound healing’,J. Cell Biochem.,87, (suppl 13B), E122Google Scholar
  99. Kenyon, K. R., andTseng, S. C. G. (1989): ‘Limbal autograft transplantation for ocular surface disorders’,Ophthalmol.,96, pp. 709–723Google Scholar
  100. King, W. W. K., Lam, P. K., Liew, C. T., Ho, W. S., andLi, A. K. C. (1997): ‘Evaluation of artificial skin (Integra) in a rodent model’,Burns,23, (suppl 1), pp. S30-S32Google Scholar
  101. Koga, M. (1988): ‘Epidermal grafting using the tops of suction blisters in the treatment of vitiligo’,Arch. Dermatol.,124, pp. 1656–1658CrossRefGoogle Scholar
  102. Kolodka, T. M., Garlick, J. A., andTaichman, L. B. (1998): ‘Evidence for keratinocyte stem cellsin vitro: long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes’,Proc. Natl. Acad. Sci. USA,95, pp. 4356–4361CrossRefGoogle Scholar
  103. Krueger, G. G., Morgan, J. R., Jorgensen, C. M., Schmidt, L., Li, H. L., Kwan, M. K., Boyce, S. T., Wiley, H. S., Kaplan, J., andPetersen, M. J. (1994): ‘Genetically modified skin to treat disease: potential and limitations’,J. Invest. Dermatol.103, pp. 76S-84SCrossRefGoogle Scholar
  104. Kruse, F. E., Cheng, J. I. Y., Tsai, R. J. F., andTseng, S. C. G. (1990): ‘Conjunctival transdifferentiation is due to incomplete removal of limbal basal epithelium’,Invest. Ophthalmol. Vis. Sci.,31, pp. 1903–1913Google Scholar
  105. Kumagai, N., Nishina, H., Tanabe, H., Hosaka, T., Ishida, H., andOgino, Y. (1988): ‘Clinical applications of autologous cultured epithelia for the treatment of burn wounds and burn scars’,Plast. Reconstr. Surg.,82, pp. 99–110Google Scholar
  106. Kumagai, N., andUchikoshi, T. (1997): ‘Treatment of extensive hypomelanosis with autologous cultured epithelium’,Ann. Plast. Surg.,39, pp. 68–73CrossRefGoogle Scholar
  107. Lafferty, K. H., Prowse, S. J., andSimeonovic, C. J. (1983): ‘Immunobiology of tissue transplantation: a return to the passenger leukocyte concept’,Ann. Rev. Immunol.,1, pp. 143–173CrossRefGoogle Scholar
  108. Lajtha, L. G. (1979): ‘Stem cell concept’,Differentiation,14, pp. 23–34CrossRefGoogle Scholar
  109. Langdon, R. C., Cuono, C. B., Birchall, N., Madri, J. A., Kuklinska, E., McGuire, J., andMoelmann, G. (1988): ‘Reconstitution of structure and cell function in human skin grafts derived from cryopreserved allogenic dermis and autologous cultured keratinocytes’,J. Invest. Dermatol.,91, pp. 478–485CrossRefGoogle Scholar
  110. Lattari, V., Jones, L. M., Varcelotti, J. R., Latenser, B. A., Sherman, H. F., andBarrette, R. R. (1997): ‘The use of a permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases’,J. Burn Care Rehabit.,18, pp. 147–155CrossRefGoogle Scholar
  111. Lavker, R. M., andSun, T.-T. (1983): ‘Epidermal stem cells’,J. Invest. Dermatol.,81, (suppl 1), pp. 121s-127sCrossRefGoogle Scholar
  112. Lee, E. C., Lotz, M. M., Stelle, G. D., andMercurio, A. M. (1992): ‘The integrin α6β4 is a laminin receptor’,J. Cell Biol.,117, pp. 671–678CrossRefGoogle Scholar
  113. Leigh, I. M., andPurkis, P. E. (1986): ‘Culture-grated leg ulcers’,Clim. Exp. Dermatol.,11, pp. 650–652CrossRefGoogle Scholar
  114. Lerner, A. B., Halaban, R., Klaus, S. N., andMoellmann, G. (1987): ‘Transplantation of human melanocytes’,J. Invest. Dermatol.,89, pp. 219–224CrossRefGoogle Scholar
  115. Loveland, B., andSimpson, E. (1986): ‘The non-MCH transplantation antigens: neither weak nor minor’,Immunol. Today,7, pp. 223–229CrossRefGoogle Scholar
  116. Luger, T. A., andSchwarz, T. (1990): ‘Evidence for an epidermal cytokine network’,J. Invest. Dermatol.,95, (suppl 6), pp. 100S-104SCrossRefGoogle Scholar
  117. Maestrini, E., Monaco, A. P., McGrath, J. A., Ishida-Yamamoto, A., Camisa, C., Hovnanian, A., Weeks, D. E., Lathrop, M., Uitto, J., andChristiano, A. M. (1996): ‘A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel's syndrome’,Nat. Genet.,13, pp. 70–77CrossRefGoogle Scholar
  118. Marchisio, P. C., Bondanza, S., Cremona, O., Cancedda, R., andDe Luca, M. (1991): ‘Polarized expression of integrin receptors (α6β4, α2β1, α3β1, and αvβ5) and their relationship with the cytoskeleton and basement membrane matrix in cultured human keratinocytes’,J. Cell Biol.,112, pp. 761–773CrossRefGoogle Scholar
  119. Mathor, M. B., Ferrari, G., Dellambra, E., Cilli, M., Mavilio, F., Cancedda, R., andDe Luca, M. (1996): ‘Clonal analysis of stably transduced human epidermal stem cells in culture’,Proc. Natl. Acad. Sci. USA,93, pp. 10371–10376CrossRefGoogle Scholar
  120. McGrath, J. A., Gatalica, B., Cristiano, A. M., Li, K., Owaribe, K., McMillan, J. R., Eady, R. A. J., andUitto, J. (1995): ‘Mutations in the 180-kD bullous pemphigoid antigen (BPAG2), a hemidesmosomal transmembrane collagen (COL17A1), in generalized atrophic benign epidermolysis bullosa’,Nat. Gene.,11, pp. 83–86CrossRefGoogle Scholar
  121. Merendino Jr, J. J., Insogna, Jr, K. L., Milstone, L. M., Broadus, A. E., andStewart, A. F. (1986): ‘A parathyroid hormone-like protein from culture human keratinocytes’,Science,231, pp. 388–390CrossRefGoogle Scholar
  122. Miller, S. J., Sun, T.-T., andLavker, R. M. (1993): ‘Hair follicles, stem cells, and skin cancer’,J. Invest. Dermatol.,100, pp. 288S-294SCrossRefGoogle Scholar
  123. Morgan, J. R., Barrandon, Y., Green, H., andMulligan, R. C. (1987): ‘Expression of an exogenous growth hormone gene by transplantable human epidermal cells’,Science,237, pp. 1476–1479CrossRefGoogle Scholar
  124. Munster, A. M., Weiner, S. H., andSpence R. J. (1990): ‘Cultured epidermis for the coverage of massive burn wounds’,Ann. Surg.,211, pp. 676–680CrossRefGoogle Scholar
  125. Munster, A. M. (1997): ‘Wither skin replacement?’,Burns,23, p. 1CrossRefGoogle Scholar
  126. Myers, S. R., Grady, J., Soranzo, C., Sanders, R., Green, C., Leigh, I. M., andNavsaria, H. A. (1997): ‘A hyaluronic acid membrane delivery system for cultured keratinocytes: clinical “take” rates in the porcine kerato-dermal model’,J. Burn Care Rehabil.,18, pp. 214–222CrossRefGoogle Scholar
  127. Nave, M. (1992): ‘Wound bed preparation: approaches to replacement of dermis’,J. Burn Care Rehabil.,13, pp. 147–153CrossRefGoogle Scholar
  128. Nguyen, T. T., Gilpin, D. A., Meyer, N. A., andHerndon, D. N. (1996): ‘Current treatment of severely burned patients’,Ann. Surg.,223, pp. 14–25CrossRefGoogle Scholar
  129. Niessen, C. M., Hogervorst, F., Jaspars, L. H., De Melker, A. A., Delwel, G. O., Hulsman, E. H. M. S., Kuikman, I., andSonnenberg, A. (1994): ‘The α6β4 integrin is a receptor for both laminin and kalinin’,Exp., Cell Res.,2111, pp. 360–367CrossRefGoogle Scholar
  130. Nordlund, J. J., Halder, R. M., andGrimes, P. (1993): ‘Management of vitiligo’,Dermatol. Clin.,11, pp. 27–33CrossRefGoogle Scholar
  131. Nordlund, J. J., andMajumder, P. P. (1997): ‘Recent investigations on vitiligo vulgaris’,Dermatol. Clin.,15, pp. 69–78CrossRefGoogle Scholar
  132. O'Connor, N. E., Mulliken, J. B., Banks-Schlegel, S., Kehinde, O., andGreen, H. (1981): ‘Grafting of burns with cultured epithelium prepared from autologous epidermal cells’,Lancet,i, pp. 75–78CrossRefGoogle Scholar
  133. Olsson, M. J., andJuhlin, L. (1993): ‘Repigmentation of vitiligo by transplantation of cultured autologous melanocytes’,Acta Derm. Venereol (Stockh),73, pp. 49–51Google Scholar
  134. Orentreich, N., andSelmanowitz, V. J. (1972): ‘Autograft repigmentation of leukoderma’,Arch. Dermatol.,105, pp. 734–736CrossRefGoogle Scholar
  135. Ortonne, J.-P., andBose, S. K. (1993): ‘Vitiligo: where do we stand?’,Piment Cell Res.,6, p. 61–72CrossRefGoogle Scholar
  136. Ouhayoun, J. P., Gosselin, N., Forest, N., Winter, S., andFranke, W. W. (1985): ‘Cytokeratin patterns of human oral epithelia: differences in cytokeratin synthesis in gingival epithelium and the adjacent alveolar mucosa’,Differentiation,30, pp. 123–129CrossRefGoogle Scholar
  137. Peeler, J. S., andNiederkorn, J. Y. (1986): ‘Antigen presentation by Langerhans cellsin vivo: donor-derived IA+ Langerhans cells are required for induction of delayed-type hypersensitivity but not for cytotoxic T lymphocyte responses to alloantigens’,J. Immunol.,136, pp. 4362–4368Google Scholar
  138. Pellegrini, G., De Luca, M., Orecchia, G., Balzac, F., Cremona, O., Savoia, P., Cancedda, R., andMarchisio, P. C. (1992): ‘Expression, topography, and function of integrin receptors are severely altered in keratinocytes from involved and uninvolved psoriatic skin’,J. Clin. Invest.,89, pp. 1783–1795Google Scholar
  139. Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., andDe Luca, M. (1997): ‘Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium’,Lancet,349, pp. 990–993CrossRefGoogle Scholar
  140. Phillips, T., Bhawan, J., Leigh, I. M., Baum, H. J., andGilchrest, B. A. (1990): ‘Cultured epidermal autografts and allografts: a study of differentiation and allograft survival’,J. Am. Acad. Dermatol.,23, pp. 189–198CrossRefGoogle Scholar
  141. Plott, R. T., Brysk, M. M., Newton, R. C., Raimer, S. S., andRajaraman, S. (1989): ‘A surgical treatment for vitiligo: autologous cultured-epithelial grafts’,J. Dermatol. Surg. Oncol.,11, pp. 1161–1166Google Scholar
  142. Porter, J., Beuf, A. H., Lerner, A. B., andNordlund, J. J. (1987): ‘Response to cosmetic disfigurement: patients with vitiligo’,Cutis,39, pp. 493–494Google Scholar
  143. Potten, C. S. (1983): ‘Stem cells in epidermis from the back of the mouse’inPotten, C. S. (Ed.): ‘Stem cells, their identification and characterization’ (Churchill Livingstone, London), pp. 200–232Google Scholar
  144. Prockop, D. J. (1997): ‘Marrow stromal cells as stem cells for nonhematopoietic tissues’,Science,276, pp. 71–74CrossRefGoogle Scholar
  145. Pulkkinen, L., Christiano, A. M., Gerecke, D., Wagman, D. W., Burgeson, R. E., Pittelkow, M. R., andUitto, J. (1994): ‘A homozygous nonsense mutation in the β3 chain gene of laminin 5 (LAMB 3) in Herlitz junctional epidermolysis bullosa’,Genomics,24, pp. 357–360CrossRefGoogle Scholar
  146. Purdue, G. F., Hunt, J. L., Still, Jr, J. M., Law, E. J., Herndon, D. N., Goldfarb, I. W., Schiller, W. R., Hansbrough, J. F., Hickerson, W. L., Himel, H. N., Kealey, G. P., Twomey, J., Missavage, A. E., Solem, L. D., Davis, M., Totoritis, M., andGentzkow, G. D. (1997): ‘A multicenter clinical trial of a biosinthetic skin replacement, Dermagraft-TC*, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds’,J. Burn Care Rehabil.,18, pp. 52–57CrossRefGoogle Scholar
  147. Quevedo, Jr, W. C., Fitzpatrick, T. B., Szabó, G., andJimbow, K. (1987): ‘Biology of melanocytes’in:Fitzpatrick, T. B., Eisen, A. Z., Wolff, K., Freedberg, I. M., andAusten, K. F. (Eds.): ‘Dermatology in general medicine’ (McGraw-Hill, 3rd ed.), pp. 224–251Google Scholar
  148. Rheinwald, J. G., andGreen, H. (1975): ‘Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells’,Cell,6, pp. 331–344CrossRefGoogle Scholar
  149. Rochat, A., Kobayashi, K., andBarrandon, Y. (1994): ‘Location of stem cells of human hair follicles by clonal analysis’,Cell,76, pp. 1063–1073CrossRefGoogle Scholar
  150. Ronfard, V., Broly, H., Mitchell, V., Galizia, J. P., Hochart, D., Chambon, E., Pellerin, P., andHuart, J. (1991): ‘Use of human keratinocytes cultured on fibrin glue in the treatment of burn wounds’,Burns,17, pp. 181–184CrossRefGoogle Scholar
  151. Romagnoli, G., De Luca, M., Faranda, F., Brandelloni, R., Franzi, A. T., Cataliotti, F., andCancedda, R. (1990): ‘Treatment of posterior hypospadias by the autologous graft of cultured urethral epithelium’,New Engl., J. Med.,323, pp. 527–530CrossRefGoogle Scholar
  152. Romagnoli, G., De Luca, M., Faranda, F., Franzi, A. T. andCancedda, R. (1993): ‘One-step treatment of proximal hypospadias by the autologous graft of cultured urethral epithelium’,J. Urol.,150, 1204–1207Google Scholar
  153. Roop, D. (1995): ‘Defects in the barrier’,Science, 267, pp. 474–475CrossRefGoogle Scholar
  154. Rousselle, P., Keene, D. R., Ruggiero, F., Champliaud, M. F., van der Rest, M., andBurgeson, R. E. (1997): ‘Laminin 5 binds the NC-1 domain of type VII collagen’,J. Cell Biol.,138, pp. 719–728CrossRefGoogle Scholar
  155. Ruzzi, L., Gagnoux-Palacios, L., Pinola, M., Belli, S., Meneguzzi, G., D'Alessio, M., andZambruno, G. (1997): ‘A homozygous mutation in the integrin α6 gene in junctional epidermolysis bullosa with pyloric atresia’,J. Clin. Invest.,99, pp. 2826–2831CrossRefGoogle Scholar
  156. Setoguchi, Y. S., Jaffe, H. A., Danel, C., andCrystal, R. G. (1994): ‘Ex vivo andin vivo gene transfer to the skin using replication-deficient recombinant adenovirus vectors’,J. Invest. Dermatol.,102, pp. 415–421CrossRefGoogle Scholar
  157. Shapiro, M. S., Friend, J., andThoft, R. A. (1981): ‘Corneal reepithelization from the conjunctiva’,Invest. Ophthalmol. Vis. Sci.,21, pp. 135–142Google Scholar
  158. Shapiro, L. J., Yen, P., Pomerantz, D., Martin, E., Rolewic, L., andMohandas, T. (1989): ‘Molecular studies of deletions at the human steroid sulfatase locus’,Proc. Natl. Acad. Sci. USA,86, pp. 8477–8481CrossRefGoogle Scholar
  159. Shermer, A., Galvin, S., andSun, T.-T. (1986): ‘Differentiation related expression of a major 64K corneal keratinin vivo and in culture suggests limbal location of corneal epithelial stem cells’,J. Cell Biol.,103, pp. 49–62CrossRefGoogle Scholar
  160. Sonnenberg, A., Calafat, J., Janssen, H., Daams, H., van der Raaji-Helmer, L. M. H., Falcioni, R., Kennel, S. J., Alpin, J. D., Baker, J., Loizidou, M., andGarrod, D. (1991): ‘Integrin α6β4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion’,J. Cell Biol.,113, pp. 907–917CrossRefGoogle Scholar
  161. Sonnenberg, A. (1993): ‘Integrins and their ligands’,Curr. Topics Microbiol. Immunol.,184, pp. 7–35Google Scholar
  162. Spinardi, L., Einheber, S., Cullen, T., Milner, T. A., andGiancotti, F. G. (1995): ‘A recombinant tail-less integrin α6β4 subunit disrupts hemidesmosomes, but does not suppress α6β4-mediated cell adhesion to laminins’,J. Cell Biol.,129, pp. 473–487CrossRefGoogle Scholar
  163. Stepp, M. A., Spurr-Michaud, S., Tisdale, A., Elwell, J., andGibson, I. K. (1990): ‘α6β4 integrin heterodimer is a component of hemidesmosomes’,Proc. Natl. Acad. Sci. USA,87, pp. 8970–8974CrossRefGoogle Scholar
  164. Stern, R. S., andLange, R. (1988): ‘Non-melanoma skin cancer occurring in patients treated with PUVA five to ten years after first treatment’,J. Invest. Dermatol.,91, pp. 120–124CrossRefGoogle Scholar
  165. Stern, R. S. (1990): ‘Genital tumors among men with psoriasis exposed to psoralen and ultraviolet A radiation (PUVA) and ultraviolet B radiation. The Photochemiotherapy Follow-Up Study’,New Engl. J. Med.,322, pp. 1093–1097CrossRefGoogle Scholar
  166. Stern, R. S., Nichols, K. T., andVakeva, L. H. (1997): ‘Malignant melanoma in patients treated for psoriasis with methoxsalen (psoralen) and ultraviolet A radiation (PUVA). The PUVA follow-up study’,New Engl. J. Med.,336, pp. 1041–1045CrossRefGoogle Scholar
  167. Stockschlader, M. A. R., Schuening, F. G., Graham, T. C., andStorb, R. (1994): ‘Transplantation of retrovirus-transduced canine keratinocytes expressing the β-galactosidase gene’,Gene Ther.,1, pp. 317–322Google Scholar
  168. Sullivan, H. C., andAtkins, J. H. (1968): ‘Free autogenous gingival grafts: I. Principles of successful grafting’,Periodontics,6, pp. 121–129Google Scholar
  169. Teepe, R. C. G., Koebrugge, E. J., Ponec, M., andVermeer, B. J. (1990): ‘Fresh versus cryopreserved cultured allografts for the treatment of chronic skin ulcers’,Br. J. Dermatol.,122, pp. 81–89CrossRefGoogle Scholar
  170. Teepe, R. G. C. (1993a): ‘General introduction’inTeepe, R. G. C. (Ed.) ‘Cultured keratinocyte grafting. Implications for Wound Healing’ (Thesis, Leiden), pp. 9–44Google Scholar
  171. Teepe, R. C. G., Kreis, R. W., Koebrugge, E. J., Kempenaar, J. A., Vloemans, A. F. P. M., Hermans, R. P., Boxma, H., Dokter, J., Hermans, J., Ponec, M., andVermeer, B. J. (1993b): ‘The use of cultured autologous epidermis in the treatment of extensive burn wounds’inTeepe, R. G. C. (Ed.) ‘Cultured keratinocyte grafting. Implications for wound healing’ (Thesis, Leiden), pp. 45–58Google Scholar
  172. Teumer, J., Lindahl, A., andGreen, H. (1990): ‘Human growth hormone in the blood of athymic mice grafted with cultures of hormone-secreting human keratinocytes’,FASEB J.,4, pp. 3245–3250Google Scholar
  173. Thoft, R. A., andFriend, J. (1977): ‘Biochemical transformation of regenerating ocular surface epithelium’,Invest. Ophthalmol. Vis. Sci.,16, pp. 14–20Google Scholar
  174. Tsai, R. J.-F., Sun, T.-T., andTseng, S. C. G. (1990): ‘Comparison of limbal and conjunctival autograft transplantation in corneal surface reconstruction in rabbits’,Ophthalmology,97, pp. 446–455Google Scholar
  175. Tsai, R. J.-F., andTseng, S. C. G. (1994): ‘Human allograft limbal transplantation for corneal surface reconstruction’,Cornea,13, pp. 389–400CrossRefGoogle Scholar
  176. Vailly, I., Pulkkinen, L., Miquel, C., Christiano, A. M., Gerecke, D., Burgeson, R. E., Uitto, J., Ortonne, J. P., andMeneguzzi, G. (1995): ‘Identification of a homozygous one base-pair deletion in exon 14 of the LAMB3 gene in a patient with Herlitz junctional epidermoloysis bullosa and prenatal diagnosis in a family at risk for recurrence’,J. Invest. Dermatol.,104, pp. 462–466CrossRefGoogle Scholar
  177. Van der Neut, R., Krimpenfort, P., Calafat, J., Niessen, C. M., andSonnenberg, A. (1996): ‘Epithelial detachment due to absence of hemidesmosomes in integrin β4 null mice’,Nat. Genet.,13, pp. 366–369CrossRefGoogle Scholar
  178. Vidal, F., Baudoin, C., Miquel, C., Galliano, M.-F., Christiano, A. M., Uitto, J., Ortonne, J.-P., andMeneguzzi, G. (1995a): ‘Cloning of the laminin α3 chain and identification of a homozygous deletion in a patient with Herlitz junctional epidermolysis bullosa’,Genomic,30, pp. 273–280CrossRefGoogle Scholar
  179. Vidal, F., Aberdam, D., Miquel, C., Christiano, A. M., Pulkkinen, L., Uitto, J., Ortonne, J.-P., andMeneguzzi, G. (1995b): ‘Integrin β4 mutations associated with junctional epidermolysis bullosa with pyloric atresia’,Nat. Genet.,10, pp. 229–234CrossRefGoogle Scholar
  180. Vogt, P. M., Thompson, S., Andree, C., Liu, P., Breuing, K., Hatzis, D., Brown, H., Mulligan, R. C., andEriksson, E. (1994): ‘Genetically modified keratinocytes transplanted to wounds reconstitute the epidermis’,Proc. Natl. Acad. Sci. USA,91, pp. 9307–9311CrossRefGoogle Scholar
  181. Wang, X., Zinkel, S., Polonsky, K., andFuchs, E. (1997): ‘Transgenic studies with a keratin promoter-driven growth hormone transgene: prospects for gene therapy’,Proc. Natl. Acad. Sci. USA,94, pp. 219–226zbMATHCrossRefGoogle Scholar
  182. Watt, F. M. (1989): ‘Terminal differentiation of epidermal keratinocytes’,Curr. Opin. Cell Biol.,6, pp. 1107–1115Google Scholar
  183. Watt, F. M., andHertle, M. D. (1994): ‘Keratinocyte integrins’ (1994):inLeigh, I., Lane, B., andWatt, F. (Eds.): ‘The keratinocyte handbook’, (Cambridge University Press), pp. 153–164Google Scholar
  184. Wei, Z. G., Wu, R. L., Lavker, L. M., andSun, T.-T. (1993): ‘In vitro growth and differentiation of rabbit bulbar, fornix and palpebral conjunctival epithelia: implications on conjunctival epithelial transdifferentiation and stem cells’,Invest. Ophthalmol. Vis. Sci.,34, pp. 1814–1828Google Scholar
  185. Wei, Z. G., Cotsarelis, G., Sun, T.-T., andLavker, L. M. (1995): ‘Label-retaining cells are preferentially located in fornical epithelium: implications on conjunctival epithelial homeostasis’,Invest. Ophthal. Mol. Vis. Sci.,36, pp. 236–246Google Scholar
  186. Wei, Z. G., Sun, T.-T., andLavker, L. M. (1996): ‘Rabbit conjunctival and corneal cells belong to two separate lineages’,Invest. Ophthalmol. Vis. Sci.,37, pp. 523–533Google Scholar
  187. Young, D., Langdon, R., andKahan, R. (1989): ‘Analysis of the fate of allografted dermis using a DNA fingerprinting technique’,Proc. Am. Burn Assoc.,12, pp. 71–75Google Scholar
  188. Zachariae, H., Zachariae, C., Deleuran, B., andKristensen, P. (1993): ‘Autotransplantation in vitiligo: treatment with epidermal grafts and cultured melanocytes’,Acta Derm. Venereol (Stockh),73, pp. 46–48Google Scholar
  189. Zambruno, G., Marchisio, P. C., Marconi, A., Vaschieri, C., Melchiori, A., Giannetti, A., andDe Luca, M. (1995): ‘Transforming growth factor-β1 modulates β1 and β5 integrin receptors and induces the de novo expression of the αvβ6 heterodimer in normal human keratinocytes: implications for wound healing’,J. Cell Biol.,129, pp. 853–865CrossRefGoogle Scholar
  190. Zhong-Chu, L., Yu-Hen, Z., Ya-Xiong, S., andYu-Feng, C. (1981): ‘One-stage urethroplasty for hypospadias using a tube constructed with bladder mucosa—a new procedure’,Urol. Clin. North Am.,8, pp. 463–470Google Scholar

Copyright information

© IFMBE 1998

Authors and Affiliations

  • G. Pellegrini
    • 1
  • S. Bondanza
    • 1
  • L. Guerra
    • 1
  • M. De Luca
    • 1
  1. 1.Laboratory of Tissue Engineering, I.D.C.-IRCCSIstituto Dermopatico dell'ImmacolataPomezia, RomaItaly

Personalised recommendations