Advertisement

Medical and Biological Engineering and Computing

, Volume 36, Issue 6, pp 711–716 | Cite as

The volume conductor may act as a temporal filter on the ECG and EEG

  • J. G. Stinstra
  • M. J. Peters
Article

Abstract

The influence of the volume conductor on the EEG, MEG, fetal ECG and fetal MCG is studied by means of simulations. The assumption that the Maxwell equations can be used in a quasi-static approximation is reconsidered and the fact that the conductivity of human tissue is frequency dependent is taken into account. It is found that displacement currents have a substantial effect on the fetal ECG and to a lesser degree on the fetal MCG. Moreover, the frequency dependence of the conductivity of the tissues within the head may have a considerable effect on the EEG.

Keywords

Volume conductor Electroencephalography Magnetoencephalography Fetal electrocardiography Fetal magnetocardiography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferdjallah M., Bostick F. X. andBarr R. E. (1996): ‘Potential and current density distributions of cranial electrotherapy stimulation (CES) in a four-concentric-spheres model’,IEEE Trans. Biomed. Eng.,BME-43, pp. 939–943CrossRefGoogle Scholar
  2. Gabriel, S., Lau, R. W. andGabriel C. (1996a): ‘The dielectric properties of biological tissue: II. Measurements in the frequency range 10 Hz to 20 GHz’,Phys. Med. Biol.,41, pp. 2251–2269CrossRefGoogle Scholar
  3. Gabriel, S., Lau, R. W. andGabriel, C. (1996b): ‘The dielectric properties of biological tissue: III. Parametric models for the dielectric spectrum of tissues’,Phys. Med. Biol.,41, pp. 2271–2293CrossRefGoogle Scholar
  4. Geddes, L. A. andBaker, L. E. (1967): ‘The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist’,Med. Biol. Eng.,5, pp. 271–293CrossRefGoogle Scholar
  5. Kosterich, D. J., Foster, K. R. andPollack, S. R. (1983): ‘Dielectric permittivity and electrical conductivity of fluid saturated bone’,IEEE Trans. Biomed. Eng.,BME-30, pp. 81–86Google Scholar
  6. Law, S.K. (1993): ‘Thickness and resistivity variations over the upper surface of the human skull’,Brain Topography,6, pp. 99–109CrossRefGoogle Scholar
  7. Nicholson, P. W. (1965): ‘Specific impedance of cerebral white matter’,Exp. Neurol.,13, pp. 386–401CrossRefGoogle Scholar
  8. Oostendorp, T. F. (1989): ‘Modeling the fetal ECG’, PhD thesis, Catholic University of Nijmegen, The NetherlandsGoogle Scholar
  9. Oostendorp, T. F., Oosterom, A. van andJomgsma, H. W. (1989): ‘Electrical properties of tissues involved in the conduction of foetal ECG’,Med. Biol. Eng. Comput.,27, pp. 322–324CrossRefGoogle Scholar
  10. Pethig, R. (1979): ‘Dielectric and electronic properties of biological materials’ (John Wiley & Sons, Chichester)Google Scholar
  11. Plonsey, R. andHeppner, D. B. (1967): ‘Considerations of quasistationarity in electrophysiological systems’,Bul. Math. Biophys.,29, pp. 657–664CrossRefGoogle Scholar
  12. Quinn, A., Weir, A. I., Shahani, U., Bain, R., Maas, P. andDonaldson, G. (1994): ‘Antenatal fetal magnetocardiography: a new method for fetal surveillance?’,Brit. J. Obstetr. Gynaecol.,101, pp. 866–870Google Scholar
  13. Ranck, J. B. Jr. (1963): ‘Specific impedance of rabbit cerebral cortex’,Exp. Neurol.,7, pp. 144–152CrossRefGoogle Scholar
  14. Robillard, P. N. andPoussart, Y. (1977): ‘Specific-impedance measurements of brain tissues’,Med. Biol. Eng. Comput.,15, pp. 438–445CrossRefGoogle Scholar
  15. Rosell, J., Colominas, J., Riu, P., Pallas-Areny, R. andWebster, J. G. (1988): ‘Skin impedance from 1Hz to 1MHz’,IEEE Trans. Biomed. Eng.,35, pp. 649–651CrossRefGoogle Scholar
  16. Rush, S., Abildskov, J. A. andMcFee, R. (1963): ‘Resistivity of body tissues at low frequencies’,Circ. Res.,XII, pp. 40–50Google Scholar
  17. Schwan, H. P. (1957): ‘Electrical properties of tissue and cell suspensions’,in Tobias, C. A. (Ed.): ‘Advances in biological and medical physics’ (Academic Press, New York) pp. 147–209Google Scholar
  18. Schwan, H. P. andFoster, K. R. (1980): ‘RF-field interactions with biological systems: Electrical properties and biophysical mechanisms’,Proc. IEEE,68, pp. 104–113CrossRefGoogle Scholar
  19. Schwan, H. P. andKay, C. F. (1956): ‘Specific resistance of body tissues’,Circ. Res.,IV, pp. 664–670Google Scholar
  20. Stuchly, M. A. andStuchly, S. S. (1980): ‘Dielectric properties of biological substances—tabulated’,J. Microwave Power,15, pp. 19–26Google Scholar

Copyright information

© IFMBE 1998

Authors and Affiliations

  • J. G. Stinstra
    • 1
  • M. J. Peters
    • 1
  1. 1.Graduate School Integrated BioMedical Engineering for Restoration of Human Function (iBME), Faculty of Applied PhysicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations