Advertisement

Journal of Radioanalytical Chemistry

, Volume 70, Issue 1–2, pp 539–550 | Cite as

Calculation of the absolute peak efficiency of Ge and Ge(Li) detectors for different counting geometries

  • L. Moens
  • F. De Corte
  • A. Simonits
  • Lin Xilei
  • A. De Wispelaere
  • J. De Donder
  • J. Hoste
Computer Predictions and Automated Systems

Abstract

A new method is presented to calculate with improved accuracy the absolute peak efficiency of cylindrical Ge and Ge(Li) detectors for point, disk and cylinder sources, positioned at any source-detector distance. Moreover attention was paid to true-coincidence effects. The method is extensively tested and applied for the analysis of reference materials. The accuracy turned out to be 3% or better.

Keywords

Peak Efficiency Absolute Peak Detector Crystal Reactor Neutron Activation Analysis USAEC Report 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. PROESCH, M. LUTHARDT, L. KOLDITZ, Isotopenpraxis, 15 (1979) 297.Google Scholar
  2. 2.
    C. C. GROSJEAN, Nucl. Instr. Methods, 17 (1962) 289.CrossRefGoogle Scholar
  3. 3.
    R. L. HEATH, Scintillation Spectrometry, Gamma-Ray Spectrum Catalogue, 2nd ed., USAEC Report IDO-16880, 1964.Google Scholar
  4. 4.
    D. C. CAMP, A. L. VAN LEHN, Nucl. Instr. Methods, 76 (1969) 192.CrossRefGoogle Scholar
  5. 5.
    R. GRIFFITHS, Nucl. Instr. Methods, 91 (1971) 377.CrossRefGoogle Scholar
  6. 6.
    R. GUNNINK, J. B. NIDAY, Computerized Quantitative Analysis by Gamma-Ray Spectrometry Vol. 1 Description of the Gammanal Program, USAEC Report UCRL-51061, 1972.Google Scholar
  7. 7.
    J. E. CLINE, A Technique of Gamma-Ray Detector Absolute Efficiency Calibration for Extended Sources, Proc. of the Am. Nucl. Soc. Topical Conference at Mayaguez, Puerto Rico, 1978, CONF-780421, 1979, p. 185.Google Scholar
  8. 8.
    MASAYASU NOGUCHI, KENJI TAKEDA, HIDEA HIGUCHI, Int. J. Appl. Radiat. Isotopes, 32 (1981) 17.CrossRefGoogle Scholar
  9. 9.
    G. AUBIN, J. BARRETTE, G. LAMOUREUX, S. MONARO, Nucl. Instr. Methods, 76 (1969) 85.CrossRefGoogle Scholar
  10. 10.
    S. N. KAPLANIS, Int. J. Appl. Radiat. Isotopes, 29 (1978) 543.CrossRefGoogle Scholar
  11. 11.
    BIAGIO ARCIPIANI, EDMONDO PEDRETTI, Atomkernenergie/Kerntechnik, 35 (1980) 210.Google Scholar
  12. 12.
    I. R. WILLIAMS, Nucl. Instr. Methods, 44 (1966) 160.CrossRefGoogle Scholar
  13. 13.
    L. MOENS, J. DE DONDER, LIN XILEI, F. DE CORTE, A. DE WISPELAERE, A. SIMONITS, J. HOSTE, Nucl. Instr. Methods, 187 (2,3) (1981).Google Scholar
  14. 14.
    D. S. ANDREEV, K. I. EROKHINA, V. S. ZVONOV, I. Kh. LEMBERG, Instr. Expt. Techn., 15 (1972) 1358.Google Scholar
  15. 15.
    L. MOENS et al., (in preparation).Google Scholar
  16. 16.
    A. SIMONITS, L. MOENS, F. DE CORTE, A. DE WISPELAERE, A. ELEK, J. HOSTE, J. Radioanal. Chem., 60 (1980) 461.CrossRefGoogle Scholar
  17. 17.
    L. MOENS, F. DE CORTE, A. SIMONITS, A. DE WISPELAERE, A. ELEK, J. HOSTE, (in preparation).Google Scholar
  18. 18.
    L. MOENS, Doctorate Thesis, Rijksuniversiteit Gent, 1981.Google Scholar
  19. 19.
    LIN XILEI, Doctorate Thesis, Rijksuniversiteit Gent, 1981.Google Scholar

Copyright information

© Akadémiai Kiadó 1982

Authors and Affiliations

  • L. Moens
    • 1
  • F. De Corte
    • 1
  • A. Simonits
    • 2
  • Lin Xilei
    • 1
  • A. De Wispelaere
    • 1
  • J. De Donder
    • 1
  • J. Hoste
    • 1
  1. 1.Institute for Nuclear SciencesRijksuniversiteit GentGent(Belgium)
  2. 2.Central Research Institute for PhysicsBudapest(Hungary)

Personalised recommendations