Researches on Population Ecology

, Volume 37, Issue 1, pp 111–118 | Cite as

Factors and consequences of a non-functional alary polymorphism inPyrrhocoris apterus (Heteroptera: Pyrrhocoridae)

  • Alois Honěk
Special Issue: Dispersal Polymorphism in Insects: Its Adaptation and Evolution Part 2

Abstract

Functional alary polymorphisms have been studied rather extensively in several insect species. This review article deals with factors controlling wing polymorphism in a flightless species,Pyrrhocoris apterus (L.), and discusses its adaptive significance and mechanisms for their persistence under natural conditions. The macropterous morph is determined by a recessive allele whose penetrance depends on photoperiod and temperature. Natural populations of this species contain a small fraction of flightless macropters. The disadvantages of being a macropter (increase of development time, decrease of fecundity) are minimal, while the benefit may consist in the tendency to prereproductive arrest of ovarian development in teneral females. It prevents establishing a second generation which would mostly die during the next winter. The mechanism of alary morph regulation may be an ancestral trait linkingP. apterus with other polymorphic Heteroptera, while its decreased penetrance may be a derivative character. Variation in fitness due to alary morphs is small compared to the one associated with differences in body size. The latter is environmentally determined, and not linked to the genetic basis of wing polymorphism. In the “mosaic” of phenotypes of various size the significance of the genetic macroptery may be close to neutral.

Key words

genetic determinants environmental factors body size life strategies adaptivity phylogenetic constraints neutrality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai T. (1978) Effects of environmental conditions on the wing form and growth inGryllodes sigillatus Walker (Orthoptera: Gryllidae).Jap. J. Ecol. 28: 135–142.Google Scholar
  2. Aukema, B. (1990) Wing-length determination in two wing-dimorphicCalathus species (Coleoptera: Carabidae).Hereditas 113: 189–202.Google Scholar
  3. Braune, H. J. (1983) The influence of environmental factors on wing polymorphism in females ofLeptopterna dolobrata (Heteroptera, Miridae).Oecologia 60: 340–347.CrossRefGoogle Scholar
  4. Briceño, R. D. and W. G. Eberhard (1987) Genetic and environmental effects on wing polymorphism in two tropical earwings (Dermaptera: Labiidae).Oecologia 74: 253–255.CrossRefGoogle Scholar
  5. Fairbairn, D. J. (1986) Does alary polymorphism imply dispersal polymorphism in the waterstrider,Gerris remigis?.Ecol. Entomol. 11: 355–368.Google Scholar
  6. Fairbairn, D. J. (1988) Adaptive significance of the wing dimorphism in the absence of dispersal: a comparative study of wing morphs in the waterstrider,Gerris remigis. Ecol. Entomol. 13: 273–281.Google Scholar
  7. Fujisaki, K. (1989) Wing form determination and sensitivity of stages to environmental factors in the oriental chinch big,Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae).Appl. Entomol. Zool. 24: 287–294.Google Scholar
  8. Fujisaki, K. (1992) A male fitness advantage to wing reduction in the oriental chinch bug,Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae).Res. Popul. Ecol. 34: 173–183.CrossRefGoogle Scholar
  9. Fujisaki, K. (1993a) Genetic correlation of wing polymorphism between females and males in the oriental chinch bug,Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae).Res. Popul. Ecol. 35: 317–324.CrossRefGoogle Scholar
  10. Fujisaki, K. (1993b) Wing reduction in the autumn generation of the oriental chinch bug,Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae).Appl. Entomol. Zool. 28: 112–115.Google Scholar
  11. Harada, T. and H. Numata (1993) Two critical day lengths for the determination of wing forms and the induction of adult diapause in the water strider,Aquarius palludum.Naturwissenschaften 80: 430–432.CrossRefGoogle Scholar
  12. Harada, T. and K. Taneda (1989) Seasonal changes in alary dimorphism of a waterstrider,Gerris palludum insularis (Motschulsky).J. Insect Physiol. 35: 919–924.CrossRefGoogle Scholar
  13. Heliövaara, K. (1984) Alary polymorphism and flight activity ofAradus cinnamomeus (Heteroptera, Aradidae).Ann. Entomol. Fenn. 50: 69–75.Google Scholar
  14. Hodek, I. (1968) Diapause in females ofPyrrhocoris apterus L. (Heteroptera).Acta Entomol. Bohemoslov. 65: 422–435.Google Scholar
  15. Honěk, A. (1976a) Factors influencing the wing polymorphism inPyrrhocoris apterus (Heteroptera, Pyrrhocoridae).Zooll. Jb. Syst. 103: 1–22.Google Scholar
  16. Honěk, A. (1976b) The regulation of wing polymorphism in natural population ofPyrrhocoris apterus (Heteroptera, Pyrrhocoridae).Zool. Jb. Syst. 103: 547–570.Google Scholar
  17. Honěk, A. (1979) Independent response of 2 characters to selection for in sensitivity to photoperiod inPyrrhocoris apterus.Experientia 35: 762–763.CrossRefGoogle Scholar
  18. Honěk, A. (1981) Temperature and wing polymorphism in natural populations ofPyrrhocoris apterus L. (Heteroptera, Pyrrhocoridae).Zool. Jb. Syst. 108: 487–501.Google Scholar
  19. Honěk, A. (1985) Ecophysiological differences between brachypterous and macropterous morphs inPyrrhocoris apterus (Heteroptera, Pyrrhocoridae).Acta Entomol. Bohemoslov. 82: 347–354.Google Scholar
  20. Honěk, A. (1986a) Body size and fecundity in natural populations ofPyrrhocoris apterus L. (Heteroptera, Pyrrhocoridae).Zool. Jb. Syst. 113: 125–140.Google Scholar
  21. Honěk, A. (1986b) Enhancement of fecundity inPyrrhocoris apterus under alternating natural conditions (Heteroptera, Pyrrhocoridae).Acta Entomol. Bohemoslov. 83: 411–417.Google Scholar
  22. Honěk, A. (1986c) Inheritance of wing form inPyrrhocoris apterus.J. Hered. 77: 465–467.Google Scholar
  23. Honěk, A. (1987a) Regulation of body size in a heteropteran bug,Pyrrhocoris apterus.Entomol. Exp. Appl. 44: 257–262.CrossRefGoogle Scholar
  24. Honěk, A. (1987b) Wing polymorphism inPyrrhocoris apterus (Heteroptera, Pyrrhocoridae): penetrance of recessive macropterous homozygotes and duration of larval development.Genetica 73: 211–215.CrossRefGoogle Scholar
  25. Honěk, A. (1992) Female size, reproduction and progeny size inPyrrhocoris apterus (Heteroptera, Pyrrhocoridae).Acta Entomol. Bohemoslov. 89: 169–178.Google Scholar
  26. Honěk, A. and F. Kocourek (1990) Temperature and development time in insects: a general relationship between thermal constants.Zool. Jb. Syst. 117: 401–439.Google Scholar
  27. Honěk, A. and K. Šrámková (1976) Behavioral regulation of developmental cycle inPyrrhocoris apterus L. (Heteroptera: Pyrrhocoridae).Oecologia 24: 277–281.CrossRefGoogle Scholar
  28. Lee, S. S. (1987) Environmental factors inducing macroptery in the psocidPsoquilla marginepuncta.Entomol. Exp. Appl. 44: 89–95.CrossRefGoogle Scholar
  29. Masaki, S. and T. Sugihara (1992) Photoperiodic control of larval development and wing form inModicogryllus sp. (Orthoptera: Gryllidae).Ecol. Res. 7: 25–30.CrossRefGoogle Scholar
  30. Mori, K. and F. Nakasuji (1990) Genetic analysis of the wing-form determination of the small brown planthopper,Laodelphax striatellus (Hemiptera: Delphacidae).Res. Popul. Ecol. 32: 279–287.CrossRefGoogle Scholar
  31. Muraji, M. and F. Nakasuji (1988) Comparative studies on life history traits of theree wing dimorphic water bugs,Microvelia spp. Westwood (Heteroptera: Veliidae).Res. Popul. Ecol. 30: 315–327.Google Scholar
  32. Nakao, S. (1993) Effects of temperature and photoperiod on wing form determination and reproduction ofThrips nigropilosus Uzel (Thysanoptera: Thripidae).Appl. Entomol. Zool. 28: 463–472.Google Scholar
  33. Numata, H., A. H. Saulich and T. A. Volkovich (1993) Photoperiodic responses of the linden bug,Pyrrhocoris apterus, under conditions of constant temperature and under thermoperiodic conditions.Zool. Sci. 10: 521–527.Google Scholar
  34. Roff, D. A. (1986) The evolution of wing dimorphism in insects.Evolution 40: 1009–1020.CrossRefGoogle Scholar
  35. Roff, D. A. (1990) The evolution of flightlessness in insects.Ecol. Monogr. 60: 389–421.CrossRefGoogle Scholar
  36. Hoff, D. A. and D. J. Fairbairn (1991) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta.Amer. Zool. 31: 243–251.Google Scholar
  37. Salt, G. (1952) Trimorphism in the ichneumonid parasiteGelis corruptor.Quart. J. Microsc. Sci. 93: 453–474.Google Scholar
  38. Saltveit, S. J. and J. E. Brittain (1986) Short-wingedness in the stoneflyDiura nanseni (Kempny) (Plecoptera: Perlodidae).Entomol. Scand. 17: 153–156.Google Scholar
  39. Seidenstuecker, G. (1953) Die plastische Modifikation des Flugels vonPyrrhocoris apterus Linn.Beitr. Entomol. 3: 29–55.Google Scholar
  40. Socha, R. (1993)Pyrrhocoris apterus (Heteroptera)—an experimental model species: a review.Eur. J. Entomol. 90: 241–286.Google Scholar
  41. Socha, R., O. Nedvěd, and J. Zrzavý (1993) Unstable forewing polymorphism in a strain ofPyrrhocoris apterus (Hemiptera: Pyrrhocoridae).Ann. Entomol. Soc. Am. 86: 484–489.Google Scholar
  42. Solbreck, C. and D. B. Anderson (1989) Wing reduction: its control and consequences in a lygaied bug,Spilostethus pandurus.Hereditas 111: 1–6.Google Scholar
  43. Tanaka, S. and H. Wolda (1987) Seasonal wing length dimorphism in a tropical seed bug: ecological significance of the short-winged form.Oecologia 73: 559–565.CrossRefGoogle Scholar
  44. Vepsäläinen, K. (1974) Determination of wing length and diapause in water-striders (Gerris Fabr., Heteroptera).Hereditas 77: 163–176.PubMedCrossRefGoogle Scholar
  45. Zera A. J. and Tiebel K. C. (1991) Photoperiodic induction of wing morphs in the waterstriderLimnoporus canaliculatus (Gerridae: Hemiptera).Ann. Entomol. Soc. Am. 84: 508–516.Google Scholar

Copyright information

© Society of Population Ecology 1995

Authors and Affiliations

  • Alois Honěk
    • 1
  1. 1.Department of EntomologyResearch Institute of Plant ProductionPrahaCzech Republic

Personalised recommendations