Researches on Population Ecology

, Volume 26, Issue 1, pp 150–187 | Cite as

Resource allocation and time budgeting in adults of the cockroach,Periplaneta americana: The interaction of behaviour and metabolic reserves

  • C. David Rollo
Article

Summary

Activity (to food, water and shelter) and resource allocation (mass budget, and size of various body components) were examined in populations of adultPeriplaneta americana subjected to periods of starvation or sugar feeding. Following 13 days of starvation, roaches ate 5 times their normal daily ration and feeding required about 20 days to return to pre-starvation levels. When sucrose was substituted for the usual dog-food diet for 13 days, there was also a large increase in feeding initially. When the dog food was re-established, however, there was very little feeding for about one week. Although reproduction was markedly curtailed by starvation, females fed sucrose continued reproducing for at least 59 days. The results suggested that the roaches were mainly energy limited.

Although the consumption of roaches was strongly affected by reserve depletion, eating was a small component of the time budget, and overall activity was relatively unchanged by starvation or sugar-feeding. There was a slight decrease in activity during starvation, but the circadian pattern remained unchanged. Females carrying oöthecae were highly active and were apparently attracted to food (even though they ate little). Thus the activity of the population was dominated by circadian rhythmicity and the reproductive cycle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BArton-Browne, L. (1975) Regulatory mechanisms in insect feeding.Adv. Insect Physiol. 11: 1–116Google Scholar
  2. Beck, S. D. (1972) Nutrition, adaptation and environment. 1–6. InJ. G. Rodriguez (ed)Insect and mite nutrition. North Holland Publ.Google Scholar
  3. Bell, W. J. (1969) Continuous and rhythmic reproductive cycle observed inPeriplaneta americana (L.).Biol. Bull. 137: 239–249.Google Scholar
  4. Bell, W. J. (1971) Starvation-induced oocyte resorption and yolk protein salvage inPeriplaneta americana.J. Insect Physiol. 17: 1099–1111.CrossRefGoogle Scholar
  5. Bell, W. J. (1982) Pheromones and behaviour. 371–397. InW. J. Bell andK. G. Adiyodi (eds)The American cockroach. Chapman and Hall.Google Scholar
  6. Bell, W. J. andK. G. Adiyodi (1982) Reproduction. 343–370. InW. J. Bell andK. G. Adiyodi (eds)The American cockroach. Chapman and Hall.Google Scholar
  7. Bernays, E. A. andS. J. Simpson (1982) Control of food intake.Ady. Insect Physiol. 16: 59–118.Google Scholar
  8. Berryman, A. A. (1981)Population systems: a general introduction. Plenum Press.Google Scholar
  9. Bignell, D. E. (1976) Gnawing activity, dietary carbohydrate deficiency and oothecal production in the American cockroach,Periplaneta americana.Experientia 32: 1405–1406.CrossRefGoogle Scholar
  10. Bignell, D. E. (1978) Effects of cellulose in the diet of cockroaches.Ent. Exp. Appl. 24: 254–257.CrossRefGoogle Scholar
  11. Boggs, C. L. (1981) Nutritional and life-history determinants of resource allocation in holometabolous insects.Amer. Natur. 117: 692–709.CrossRefGoogle Scholar
  12. Brattsten, L. B. (1979) Biochemical defense mechanisms in herbivores against plant allelochemicals. 199–270. InC. A. Rosenthal andD. H. Janzen (eds)Herbivores: their interaction with secondary plant metabolites. Acad. Press.Google Scholar
  13. Brousse-Gaury, P. (1975) Mis en evidence d'une pheromone de marquage de piste chezPeriplaneta americana.Comptes Rendus Acad. Sci. Paris Ser. D280: 319–322.Google Scholar
  14. Brousse-Gaury, P. (1976a) Glande sternale et balisage des pistes chezPeriplaneta americana (L.).Bull. Biol. France Belgique 110: 395–420.Google Scholar
  15. Brousse-Gaury, P. (1976b) Inanition et survie, des femelles dePeriplaneta americana L..Comptes Rendus Acad. Sci. Paris Ser. D.283: 159–161.Google Scholar
  16. Brousse-Gaury, P. (1976c) Induction par l'alimentation du comportement copulatoire chez les femelles dePeriplaneta americana L. (Insecte Dictyoptere).Comptes Rendus Acad. Sci. Paris Ser. D282: 385–388.Google Scholar
  17. Calow, P. (1975a) The feeding strategies of two freshwater gastropods,Ancylus fluviatilis Mull. andPlanorbis contortus Linn. (Pulmonata), in terms of ingestion rates and absorption efficiencies.Oecologia 20: 33–49.CrossRefGoogle Scholar
  18. Calow, P. (1975b) Defaecation strategies of two freshwater gastropods,Ancylus fluviatilis Mull. andPlanorbis contortus Linn. (Pulmonata), with a comparison of field and laboratory estimates of food absorption rate.Oecologia 20: 51–63.CrossRefGoogle Scholar
  19. Calow, P. (1977a) Ecology, evolution and energetics: a study in metabolic adaptation.Adv. Ecol. Res. 10: 1–61.Google Scholar
  20. Calow, P. (1977b) Conversion efficiencies in heterotrophic organisms.Biol. Rev. 52: 385–409.Google Scholar
  21. Calow, P. (1979) The cost of reproduction: a physiological approach.Biol. Rev. 54: 23–40.PubMedGoogle Scholar
  22. Calow, P. (1981) Resource utilization and reproduction. 245–270. InC. R. Townsend andP. Calow (eds)Physiological ecology: an evolutionary approach to resource use. Sinauer Assoc. Publ.Google Scholar
  23. Calow, P. andJ. B. Jennings (1977) Optimal strategies for the metabolism of reserve materials in microbes and metazoa.J. Theor. Biol. 65: 601–603.PubMedCrossRefGoogle Scholar
  24. Calow, P. andC. R. Townsend (1981) Resource utilization in growth. 220–244. InC. R. Townsend andP. Calow (eds)Physiological ecology: an evolutionary approach to resource use. Sinauer Assoc. Publ.Google Scholar
  25. Cervenkova, E. (1960) Metabolismus svalaPeriplaneta americana za hladoveni.Ceskoslovenska Zool. Spdecnost Vestnik 24: 183–193.Google Scholar
  26. Cloudsley-Thompson, J. L. (1953) Studies in diurnal rhythms 3. Photoperiodism in the cockroachPeriplaneta americana (L.).Ann. Mag. Nat. Hist. 12: 705–712.Google Scholar
  27. Cochran, D. G. A. (1979) A genetic determination of insemination frequency and sperm precedence in the German cockroach.Ent. Exp. Appl. 26: 259–266.Google Scholar
  28. Cody, M. L. (1974) Optimization in ecology.Science 183: 1156–1164.CrossRefPubMedGoogle Scholar
  29. Cowie, R. J. andJ. R. Krebs (1979) Optimal foraging in patchy environments.Symp. Brit. Ecol. Soc. 20: 183–205.Google Scholar
  30. Downer, R. G. H. (1981) Physiological and environmental considerations in insect bioenergetics. 1–17. InR. G. H. Downer (ed)Energy metabolism in insects. Plenum Publ.Google Scholar
  31. Downer, R. G. H. (1982) Fat body. 151–174. InW. J. Bell andK. G. Adiyodi (eds)The American cockroach. Chapman and Hall.Google Scholar
  32. Downer, R. G. H. andJ. R. Matthews (1976) Patterns of lipid storage and utilization in insects.Amer. Zool. 16: 733–745.Google Scholar
  33. Downer, R. G. H. andG. H. Parker (1979) Glycogen utilization during flight in the American cockroach,Periplaneta americana L..Comp. Biochem. Physiol. A64: 29–32.CrossRefGoogle Scholar
  34. Gadgil, M. andW. H. Bossert (1970) Life historical consequences of natural selection.Amer. Natur. 104: 1–24.CrossRefGoogle Scholar
  35. Gass, C. L. andR. D. Montgomerie (1981) Hummingbird foraging behavior: Decision-making and energy regulation. 159–194. InA. C. Kamil andT. D. Sargent (eds)Foraging behavior: Ecological, ethological and psychological approaches. Garland Publ.Google Scholar
  36. Gelperin, A. (1971) Regulation of feeding.Ann. Rev. Entomol. 16: 365–378.CrossRefGoogle Scholar
  37. Gier, H. T. (1947) Growth rate in the cockroachPeriplaneta americana (Linn).Ann. Ent. Soc. Amer. 40: 303–317.Google Scholar
  38. Gordon, H. T. (1959) Minimal nutritional requirements of the German roachBlattella germanica.Ann. N. Y. Acad. Sci. 77: 290–351.Google Scholar
  39. Gordon, H. T. (1968) Intake rates of various solid carbohydrates by male German cockroaches.J. Insect Physiol. 14: 41–52.CrossRefGoogle Scholar
  40. Gordon, H. T. (1972) Interpretations of insect quantitative nutrition 73–105. InJ. G. Rodriguez (ed)Insect and mite nutrition. North-Holland Publ.Google Scholar
  41. Harker, J. E. (1956) Factors controlling the diurnal rhythm of activity inPeriplaneta americana L.J. Exp. Biol. 33: 224–234.Google Scholar
  42. Haydak, M. H. (1953) Influence of the protein level of the diet on the longevity of cockroaches.Ann. Ent. Soc. Amer. 46: 547–560.Google Scholar
  43. Holling, C. S. (1963) An experimental component analysis of population processes.Mem. Ent. Soc. Can. 32: 22–32.Google Scholar
  44. Holling, C. S. (1965) The functional response of predators to prey density and its role in mimicry and population regulation.Mem. Ent. Soc. Can. 45: 1–60.Google Scholar
  45. Holling, C. S. (1966) The functional response of invertebrate predators to prey density.Mem. Ent. Soc. Can. 48: 1–85.Google Scholar
  46. Horn, H. S. (1978) Optimal tactics of reproduction and life-history. 411–429. InJ. R. Krebs andN. B. Davies (eds)Behavioural ecology: an evolutionary approach. Blackwell Sci. Publ.Google Scholar
  47. House, H. L. (1974) Nutrition. 1–62 InM. Rockstein (ed)The physiology of Insecta. Acad. Press.Google Scholar
  48. Huey, R. B. andM. Slatkin (1976) Costs and benefits of lizard thermoregulation.Q. Rev. Biol. 51: 363–384.PubMedCrossRefGoogle Scholar
  49. Humphreys, W. F. (1979) Production and respiration in animal populations.J. Anim. Ecol. 48: 427–453.CrossRefGoogle Scholar
  50. Krebs, J. R. (1978) Optimal foraging: decision rules for predators. 23–63. InJ. R. Krebs andN. R. Davies (eds)Behavioural ecology: an evolutionary approach. Blackwell Sci. Publ.Google Scholar
  51. Krebs, J. R., A. I. Houston andE. L. Charnov (1981) Some recent developments in optimal foraging. 3–18. InA. C. Kamil andT. D. Sargent (eds)Foraging behavior: Ecological. ethological and psychological approaches. Garland Publ.Google Scholar
  52. Kunkel, J. G. (1966) Development and the availability of food in the German cockroach,Blattella germanica (L.).J. Insect Physiol. 12: 227–235.CrossRefGoogle Scholar
  53. Lavigne, D. M. (1982) Similarity in energy budgets of animal populations.J. Anim. Ecol. 51: 195–206.CrossRefGoogle Scholar
  54. Lipke, H., S. Leto andB. Graves (1965) Carbohydrate-amino acid conversions during cuticle synthesis inPeriplaneta americana.J. Insect Physiol. 11: 1225–1232.PubMedCrossRefGoogle Scholar
  55. Lipton, G. R. andD. J. Sutherland (1970b) Feeding rhythms in the American cockroach,Periplaneta americana.J. Insect Physiol. 16: 1757–1767.CrossRefGoogle Scholar
  56. Maa, W. C. J. andL. L. Keeley (1980) Age and endocrine effects on fat body metabolite composition in adult maleBlaberus discoidalis cockroaches.J. Expt. Zool. 212: 113–117.CrossRefGoogle Scholar
  57. Maynard Smith, J. (1978) Optimization theory in evolution.Ann. Rev. Ecol. Syst. 9: 31–56.CrossRefGoogle Scholar
  58. McFarland, D. J. (1977) Decision making in animals.Nature 269: 15–21.CrossRefGoogle Scholar
  59. Michael, P. (1970) Energy balance inPeriplaneta americana L.Comp. Biochem. Physiol. A38: 449–455.CrossRefGoogle Scholar
  60. Mitchell, R. (1981) Insect behavior, resource exploitation, and fitness.Ann. Rev. Entomol. 26: 373–396.CrossRefGoogle Scholar
  61. Mullins, D. E. (1974) Nitrogen metabolism in the American cockroach. An examination of whole body ammonium and other cations excreted in relation to water requirements.J. Exp. Biol. 61: 541–556.PubMedGoogle Scholar
  62. Mullins, D. E. (1982) Osmoregulation and excretion. 117–149. InW. J. Bell andK. G. Adiyodi (eds)The American cockroach. Chapman and Hall.Google Scholar
  63. Mullins, D. E. andD. G. Cochran (1975a) Nitrogen metabolism in the American cockroach I. An examination of positive nitrogen balance with respect to uric acid stores.Comp. Biochem. Physiol. A50: 489–500.CrossRefGoogle Scholar
  64. Mullins, D. E. andD. G. Cochran (1975b) Nitrogen metabolism in the American cockroach-II. An examination of negative nitrogen balance with respect to mobilization of uric acid stores.Comp. Biochem. Physiol. A50: 501–510.CrossRefGoogle Scholar
  65. Mullins, D. E. andC. B. Keil (1980) Paternal investment of urates in cockroaches.Nature 283: 567–569.CrossRefGoogle Scholar
  66. Parker, G. A. (1978) Searching for mates. 214–244. InJ. R. Krebs andN. B. Davies (eds)Behavioural ecology: an evolutionary approach. Blackwell Sci. Publ.Google Scholar
  67. Pianka, E. R. (1978)Evolutionary ecology. 2nd Ed. Harper and Row Publ.Google Scholar
  68. Planka, E. R. (1981) Resource acquisition and allocation among animals. 300–314. InC. R. Townsend andP. Calow (eds)Physiological ecology: an evolutionary approach to resource use. Sinauer Assoc.Google Scholar
  69. Pond, C. M. (1981) Storage. 190–219. InC. R. Townsend andP. Calow (eds)Physiological ecology: an evolutionary approach to resource use. Sinauer Assoc.Google Scholar
  70. Pyke, G. H., H. R. Pulliam andE. L. Charnov (1977) Optimal foraging: a selective review of theory and tests.Q. Rev. Biol. 52: 137–154.CrossRefGoogle Scholar
  71. Rachman, N. J. (1980) Physiology of feeding preference patterns of female black blowflies (Phormia regina Meigen) I. The role of carbohydrate reserves.J. Comp. Physiol. A139: 59–66.CrossRefGoogle Scholar
  72. Reynierse, J. H., A. Manning andD. Cafferty (1972) The effects of hunger and thirst on body weight and activity in the cockroachNauphoeta cinerea.Anim. Behav. 20: 751–757.PubMedCrossRefGoogle Scholar
  73. Rhoades, D. F. (1979) Evolution of plant chemical defense against herbivores. 3–54. InG. A. Rosenthal andD. H. Janzen (eds)Herbivores: their interaction with secondary plant metabolites. Acad. Press.Google Scholar
  74. Sams, G. R. andW. J. Bell (1977) Juvenile hormone initiation of yolk deposition in vitro in the ovary of the cockroach,Periplaneta americana. 404–413. InK. G. Adiyodi andR. G. Adiyodi (eds)Advances in invertebrate reproduction Vol. I. Peralam-Kenoth Publ.Google Scholar
  75. Schal, C. andW. J. Bell (1982) Ecological correlates of paternal investment of urates in a tropical cockroach.Science 218: 170–173.CrossRefPubMedGoogle Scholar
  76. Schoener, T. W. (1971) Theory of feeding strategies.Ann. Rev. Ecol. Syst. 2: 369–404.CrossRefGoogle Scholar
  77. Scriber, J. M. andF. Slansky Jr. (1981) The nutritional ecology of immature insects.Ann. Rev. Entomol. 26: 183–211.CrossRefGoogle Scholar
  78. Sibly, R. M. (1981) Strategies of digestion and defecation. 109–139. InC. R. Townsend andP. Calow (eds)Physiological ecology: an evolutionary approach to resource use. Sinauer Assoc.Google Scholar
  79. Slansky, F. Jr. (1980a) Quantitative food utilization and reproductive allocation by adult milkweed bugsOncopeltus fasciatus.Physiol. Entomol. 5: 73–86.Google Scholar
  80. Slansky, F. Jr. (1980b) Effect of food limitation on food consumption and reproductive allocation by adult milkweed bugs,Oncopeltus fasciatus.J. Insect Physiol. 26: 79–84.CrossRefGoogle Scholar
  81. Slansky, F. Jr. (1980c) Food consumption and reproduction as affected by tethered flight in female milkweed bugs (Oncopeltus fasciatus).Ent. Exp. Appl. 28: 277–286.CrossRefGoogle Scholar
  82. Slansky, F. Jr. (1982) Insect nutrition: an adaptationist's perspective.Florida Entomol. 65: 45–71.Google Scholar
  83. Slansky, F. Jr. andP. Feeny (1977) Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants.Ecol. Monog. 47: 209–228.CrossRefGoogle Scholar
  84. Slansky, F. Jr. andJ. M. Scriber (1982) Selected bibliography and summary of quantitative food utilization by immature insects.Bull. Ent. Soc. Amer. 28: 43–55.Google Scholar
  85. Southwood, T. R. E. (1977) Habitat, the templet for ecological strategies?J. Anim. Ecol. 46: 337–365.Google Scholar
  86. Stearns, S. C. (1976) Life-history tactics: a review of the ideas.Q. Rev. Biol. 51: 3–47.PubMedCrossRefGoogle Scholar
  87. Stearns, S. C. (1977) The evolution of life-history traits: a critique of the theory and a review of the data.Ann. Rev. Ecol. Syst. 8: 145–171.CrossRefGoogle Scholar
  88. Steele, J. E. (1976) Hormonal control of metabolism in insects.Adv. Insect Physiol. 12: 239–324.Google Scholar
  89. Sutherland, D. J. (1982) Rhythms. 247–273. InW. J. Bell andK. G. Adiyodi (eds)The American cockroach. Chapman and Hall.Google Scholar
  90. Taylor, F. (1980) Timing of the life histories of insects.Theor. Popul. Biol. 18: 112–124.PubMedCrossRefGoogle Scholar
  91. Toates, F. M. (1980)Animal behaviour—a systems approach. J. Wiley and Sons.Google Scholar
  92. Townsend, C. R. andR. H. Hughes (1981) Maximizing net energy returns from foraging. 86–108. InC. R. Townsend andP. Calow (eds)Physiological ecology: an evolutionary approach to resource use. Sinauer Assoc.Google Scholar
  93. Tucker, L. E. (1977a) The influence of diet, age and state of hydration on Na, K, and urate balance in the fat body of the cockroachPeriplaneta americana.J. Exp. Biol. 71: 67–78.Google Scholar
  94. Tucker, L. E. (1977b) Regulation of ions in the haemolymph of the cockroach,Periplaneta americana, during dehydration and rehydration.J. Exp. Biol. 71: 95–110.Google Scholar
  95. Turunen, S. (1979) Digestion and absorption of lipids in insects.Comp. Biochem. Physiol. A63: 455–460.CrossRefGoogle Scholar
  96. Van Herrewege, C. (1974) Regulation de la prise de nouriture apres un jeune, chez males de 1a blatte Germanique dans differentes conditions alimentaires.Ent. Exp. Appl. 17: 234–244.CrossRefGoogle Scholar
  97. Verrett, J. M. andR. R. Mills (1973) Water balance during vitellogenesis by the American cockroach: translocation of water during the cycle.J. Insect Physiol. 19: 1889–1901.PubMedCrossRefGoogle Scholar
  98. Verrett, J. M. andR. R. Mills (1975a) Water balance during vitellogenesis by the American cockroach: hydration of the oocytes.J. Insect Physiol. 21: 1061–1064.CrossRefGoogle Scholar
  99. Verrett, J. M. andR. R. Mills (1975b) Water balance during vitellogenesis by the American cockroach: distribution of water during the six-day cycle.J. Insect Physiol. 21: 1841–1845.PubMedCrossRefGoogle Scholar
  100. Waldbauer, G. P. (1968) Consumption and utilization of food by insects.Adv. Insect Physiol. 5: 229–288.CrossRefGoogle Scholar
  101. Weaver, R. J. andG. E. Pratt (1977) The effect of enforced virginity and subsequent mating on the activity of the corpus allatum ofPeriplaneta americana measured in vitro, as related to changes in the rate of ovarian maturation.Physiol. Entomol. 2: 59–76.Google Scholar
  102. Weaver, R. J. andG. E. Pratt (1981) Effects of starvation and feeding upon corpus allatum activity and oocyte growth in adult femalePeriplaneta americana.J. Insect Physiol. 27: 75–83.CrossRefGoogle Scholar
  103. Weaver, R. J., G. E. Pratt andJ. R. Finney (1975) Cyclic activity of the corpus allatum related to gonotrophic cycles in adult femalePeriplaneta americana.Experientia 31: 597–598.PubMedCrossRefGoogle Scholar
  104. Werner, E. E. andG. G. Mittelbach (1981) Optimal foraging: field tests of diet choice and habitat switching.Amer. Zool. 21: 813–829.Google Scholar
  105. Wharton, D. R. A., M. L. Wharton andJ. Lola (1965) Blood volume and water content of the male American cockroach,Periplaneta americana L. Methods and influence of age and starvation.J. Insect Physiol. 11: 391–404.PubMedCrossRefGoogle Scholar
  106. Wiegert, R. G. andC. E. Petersen (1983) Energy transfer in insects.Ann. Rev. Entomol. 28: 455–486.CrossRefGoogle Scholar
  107. Willis, E. R. andN. Lewis (1957) The longevity of starved cockroaches.J. Econ. Entomol. 50: 438–440.Google Scholar
  108. Woodring, J. P., C. W. Clifford andB. R. Beckman (1979) Food utilization and metabolic efficiency in larval and adult house crickets.J. Insect Physiol. 25: 903–912.CrossRefGoogle Scholar

Copyright information

© The Society of Population Ecology 1984

Authors and Affiliations

  • C. David Rollo
    • 1
  1. 1.Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations