Ukrainian Mathematical Journal

, Volume 52, Issue 4, pp 531–542 | Cite as

A brief survey of scientific results of E. A. Storozhenko

  • B. S. Kashin
  • N. P. Korneichuk
  • P. L. Ul’yanov
  • I. A. Shevchuk
  • V. A. Andrienko
Article

Abstract

We present a survey of the scientific results obtained by E. A. Storozhenko and related results of her disciples and give brief information about the seminar on the theory of functions held under her guidance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. N. Bemshtein, “On the best approximation of functions of many variables by polynomials or trigonometric sums,” Tr. Mat. Inst. Akad. Nauk SSSR, 38, 24–29 (1951).Google Scholar
  2. 2.
    E. A. Storozhenko, On the Best Approximation of Functions of Many Variables [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Odessa (1960).Google Scholar
  3. 3.
    G. Alexits, Convergence Problems of Orthogonal Series [Russian translation] Inostrannaya Literatura, Moscow 1963.MATHGoogle Scholar
  4. 4.
    K. Tandori, “über die orthogonalen Funktionen. IV,” Acta Sci. Math. Szeged., 20, No. 1, 19–24 (1959).MathSciNetGoogle Scholar
  5. 5.
    G. Alexits and D. Kralik, “über Approximationen mit den arithmetischen Mitteln allgemeiner Orthogonalreihen,” Acta Math. Acad. Sci. Hung., 11, 387–399 (1960).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    L. Leindler, “über die Rieszschen Mittel allgemeiner Orthogonalreihen,” Acta Sci. Math. Szeged., 24, No. 1-2, 129–139 (1963).MathSciNetGoogle Scholar
  7. 7.
    V. A. Andrienko, “On the rate of convergence of orthogonal series,” Vestn. Most Univ., Ser. Mat. Mekh., No. 1, 17–24 (1967).Google Scholar
  8. 8.
    E. A. Storozhenko, “On the problem of approximation by Fejer sums,” Izv. Akad. Nauk SSSR, Ser. Mat., 33, No. 1, 39–51 (1969).MATHMathSciNetGoogle Scholar
  9. 9.
    E. A. Storozhenko, “On the rate of approximation of functions by the de la Vallee Poussin means of their orthogonal expansions,” Mat. Zametki, 2, No. 2, 175–186 (1967).MATHMathSciNetGoogle Scholar
  10. 10.
    E. A. Storozhenko and Yu. M. Shmandin, “On the rate of approximation by the (C, l)-means of orthogonal series,” Ukr. Mat. Zh., 22, No. 2, 244–275 (1970).CrossRefGoogle Scholar
  11. 11.
    E. A. Storozhenko, “On approximation by linear methods of summation of orthogonal series,” Mat. Zametki, 3, No. 3, 345–356 (1968).MATHMathSciNetGoogle Scholar
  12. 12.
    V. I. Kolyada, “On the rate of convergence of orthogonal series,” Ukr. Mat. Zh., 25, No. 1, 25–38 (1973).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    P. L. Ul’yanov, “On the absolute and uniform convergence of Fourier series,” Mat. Sb., 72, No. 22, 195–225 (1967).Google Scholar
  14. 14.
    P. L. Ul’yanov, “On imbedding of certain classes of functions,” Mat. Zametki, 1, No. 4, 405–414 (1967).MATHMathSciNetGoogle Scholar
  15. 15.
    P. L. Ul’yanov, “Imbedding of certain classes of functions ,” Izv. Akad. Nauk SSSR, Ser. Mat., 32, No. 3, 649–686 (1968).MATHMathSciNetGoogle Scholar
  16. 16.
    P. L. Ul’yanov, “Imbedding theorems and relations between the best approximations (moduli of continuity) in various metrics,” Mat. Sb., 81, No. 1, 104–131 (1970).MathSciNetGoogle Scholar
  17. 17.
    P. Oswald, “On the moduli of continuity of equimeasurable functions in the classes φ(L),” Mat. Zametki, 17, No. 2, 231–244 (1975).MathSciNetGoogle Scholar
  18. 18.
    I. Wik, The Nonincreasing Rearrangement as Extremal Function, Preprint No. 2, University of Umea, Department of Mathematics (1974).Google Scholar
  19. 19.
    A. Garsia and E. Rodemich, “Monotonicity of certain functionals under rearrangement,” Ann. Inst. Fourier, 24, No. 2, 67–116 (1974).MATHMathSciNetGoogle Scholar
  20. 20.
    N. P. Korneichuk, “On the relation between the moduli of continuity of functions and their permutations,” Dopov. Akad. Nauk Ukr. RSR, No. 9, 794–796 (1973).Google Scholar
  21. 21.
    P. L. Ul’yanov, “Allgemeine Entwicklungen und gemischte fragen,” Actes Congr. Internal. Math., No. 2 (1970), pp. 667–668.Google Scholar
  22. 22.
    E. A. Storozhenko, “On some theorems on imbedding,” Mat. Zametki, 19, No. 2, 187–200 (1976).MATHMathSciNetGoogle Scholar
  23. 23.
    Yu. A. Brudnyi, “Notes on one theorem on imbedding,” in: Investigations on the Theory of Functions of Many Real Variables [in Russian] (1976), pp. 10–13.Google Scholar
  24. 24.
    E. A. Storozhenko, “On imbedding into the class e L,” Mat. Zametki, 10, No. 1, 17–24 (1971).MATHMathSciNetGoogle Scholar
  25. 25.
    E. A. Storozhenko, “Necessary and sufficient conditions for imbedding of some classes of functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 37, 386–398 (1973).MATHMathSciNetGoogle Scholar
  26. 26.
    E. A. Storozhenko, “Imbedding theorems and best approximations,” Mat. Sb., 97, No. 2, 230–241 (1975).MathSciNetGoogle Scholar
  27. 27.
    E. A. Storozhenko, “On imbedding theorems for the derivatives of one class of functions,” Mat. Zametki, 24, No. 1, 85–94(1978).MATHMathSciNetGoogle Scholar
  28. 28.
    E. A. Storozhenko, “On the problem of imbedding of certain classes of functions,” Ukr. Mat. Zh., 30, No. 3, 334–345 (1978).MATHMathSciNetGoogle Scholar
  29. 29.
    V. I. Kolyada, “On imbedding of certain classes of functions of many variables,” Sib. Mat. Zh., 14, No. 4, 766–790 (1973).MATHGoogle Scholar
  30. 30.
    E. A. Storozhenko, V. I. Kolyada, and M. K. Potapov, “On imbedding theorems,” in: Proceedings of the Fourth Saratov Winter School [in Russian] (1990), pp. 12–21.Google Scholar
  31. 31.
    E. A. Storozhenko, V. G. Krotov, and P. Oswald, “Direct and inverse Jackson-type theorems in the spaces L p, 0<p<1” Mat. Sb., 98, No. 3, 395–415 (1975).MathSciNetGoogle Scholar
  32. 32.
    V. I. Ivanov, Direct and inverse theorems in the theory of approximations in the metric of L p for 0 p 1, Mat. Zametki, No. 18, 641–658(1975).Google Scholar
  33. 33.
    H. Whitney, “On functions with bounded n-differences,” J. Math. Pures Appl., No. 36, 67–95 (1957).Google Scholar
  34. 34.
    Yu. A. Brudnyi, “On one theorem on local best approximations,” Uch. Zap. Kazan. Univ., 124, No. 6, 43–19 (1964).MathSciNetGoogle Scholar
  35. 35.
    E. A. Storozhenko and P. Oswald, “Jackson theorem in the space l p(R k), 0<p<pSib. Mat. Zh., 19, No. 4, 888–901 (1978).MATHGoogle Scholar
  36. 36.
    E. A. Storozhenko, “Approximation of functions by splines of interpolation in the mean,” hv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 12, 82–95 (1976).Google Scholar
  37. 37.
    Yu. V. Kryakin, “On exact constants in the Whitney theorem,” Mat. Zametki, 54, No. 1, 34–51 (1993).MathSciNetGoogle Scholar
  38. 38.
    E. A. Storozhenko and Yu. V. Kryakin, “On Whitney theorems in the L p-metric, 0<p<∞,” Mat. Sb., 186, No. 3, 131–142 (1995).MathSciNetGoogle Scholar
  39. 39.
    E. A. Storozhenko and P. Oswald, “Jackson theorem in the spaces L p(R k), 0<p<1,” Dokl. Akad. Nauk SSSR, 229, No. 3, 554–557 (1976).MathSciNetGoogle Scholar
  40. 40.
    E. A. Storozhenko and P. Oswald, “Moduli of smoothness and best approximations in the space L p, 0<p<1,” Anal. Math., 3, No. 2. 141–150 (1977).MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    K. V. Runovskii, “On the approximation by families of linear polynomial operators in the spaces L p, 0<p<1,” Mat. Sb., 185, No. 8. 81–102 (1994).Google Scholar
  42. 42.
    E. A. Storozhenko, “Approximation of functions of the class L p, 0<p<1, by algebraic polynomials,” hv. Akad. Nauk SSSR, Ser. Mat., 41, No. 3, 651–662 (1977).Google Scholar
  43. 43.
    V. I. Ivanov, “Some inequalities for trigonometric polynomials and their derivatives in various metrics,” Mat. Zametki, 18, 489–498 (1975).MATHMathSciNetGoogle Scholar
  44. 44.
    F. Riesz, “Uber die Randwerte einer analytischen Function,” Math. Z., 18, 87–95 (1923).CrossRefMathSciNetGoogle Scholar
  45. 45.
    G. H. Hardy and J. E. Littlewood, “Theorems concerning Cesaro means of power series,” Proc. London Math. Soc., 36, 516–531 (1934).MATHCrossRefGoogle Scholar
  46. 46.
    A. Zygmund, “On the convergence and summability of power series on the circle of convergence. II,” Proc. London Math. Soc., 47, 326–350(1942).MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    G. Sunouchi, “Theorems on power series of the class HsupTohoku Math. J., 8, 125–146 (1956).MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    E. A. Storozhenko, “On approximation of functions of the class H p, 0<p<1,” Soobshch. Akad. Nauk Gruz. SSR, 88, No. 1, 45–48 (1977).Google Scholar
  49. 49.
    E. A. Storozhenko, “On the rate of approximation of functions of the classes H p, 0<p<1,” Dokl. Akad. Nauk Arm. SSR, 66, No. 3, 145–149(1978).MATHMathSciNetGoogle Scholar
  50. 50.
    E. A. Storozhenko, “Approximation of functions of the classes H p, 0<p<1,” Mat. Sb., 105, No. 4, 601–621 (1978).MathSciNetGoogle Scholar
  51. 51.
    E. A. Storozhenko. “On Jackson-type theorems in H p, 0<p<1,” hv. Akad. Nauk SSSR, Ser. Mat., 44, No. 4, 946–962 (1980).MATHMathSciNetGoogle Scholar
  52. 52.
    A. A. Solyanik, “On the properties of H p-moduli of continuity and approximation of functions from H p(R), 0<p<1,” Teor. Funkts. Prilozhen., 49–52 (1986).Google Scholar
  53. 53.
    G. H. Hardy and J. E. Littlewood, “Some properties of fractional integrals. II,” Math. Z., 34, 403–139 (1932).CrossRefMathSciNetGoogle Scholar
  54. 54.
    Yu. A. Brudnyi and I. E. Gopengauz, “Generalization of one Hardy-Littlewood theorem,” Mat. Sb., 52, No. 3, 891–894 (1960).MathSciNetGoogle Scholar
  55. 55.
    E. A. Storozhenko. “On one Hardy-Littlewood problem.” Mat. Sb., 119, No. 4, 564–584 (1982).MathSciNetGoogle Scholar
  56. 56.
    E. A. Storozhenko and J. Valasek, “Generalization of one Hardy-Littlewood theorem,” in: Constructive Theory of Functions [in Russian] (1983), pp. 164–167.Google Scholar
  57. 57.
    Yu. V. Kryakin. Approximation of Functions on the Unit Circle in the Spaces Lp and HP [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Odessa (1985).Google Scholar
  58. 58.
    E. A. Storozhenko, “On the local approximation by Abel-Poisson means in Hardy spaces,” Tr. Mat. Inst. Akad. Nauk SSSR, 180, 243–245 (1987).Google Scholar
  59. 59.
    E. A. Storozhenko. “On one method for approximation of functions from H p, 0<p≤1,” Mat. Zametki, 57, No. 4, 581–585 (1995).MathSciNetGoogle Scholar
  60. 60.
    E. A. Storozhenko. “Smoothness and derivatives of analytic functions in the spaces H P(Bn),” Vestn. Most Univ., Ser. Mat. Mekh., No. 4, 13–16(1988).Google Scholar
  61. 61.
    J. Valasek, Approximation in Hardy Spaces in a Polydisk [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Odessa (1982).Google Scholar
  62. 62.
    A. A. Solyanik, Approximation of Functions from H p in the Upper Half-Plane[in Russian], Candidate-Degree Thesis (Physics and Mathematics), Odessa (1985).Google Scholar
  63. 63.
    Din Tien Shon, Boundary Properties of Functions from Hardy Classes [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Odessa (1988).Google Scholar
  64. 64.
    G. M. Vartanyan, Approximation Properties and Duality of Certain Functional Spaces [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Odessa (1990).Google Scholar
  65. 65.
    E. A. Storozhenko and S. Saprikin, “On some analogs of converse Bernstein inequalities in Lin0.” Funct. Approxim., 25, 111–119 (1997).MATHMathSciNetGoogle Scholar
  66. 66.
    E. A. Storozhenko, “Some inequalities for polynomials in L 0-norm,” Recent Progr. Inequal, 499–503 (1988).Google Scholar
  67. 67.
    E. A. Storozhenko and V. G. Krotov. “Approximating and differential-difference properties of functions from the Hardy spaces H p, 0<≤1,” in: Proceedings oft he Saratov Winter School [in Russian] (1983), pp. 65–81.Google Scholar
  68. 68.
    E. A. Storozhenko and V. G. Krotov, “Differential-difference properties of boundary functions from H p,” in:Proceedings of the International Conference on the Theory of Approximation of Functions [in Russian], Kiev (1987), pp. 237–240.Google Scholar
  69. 69.
    E. A. Storozhenko and V. G. Krotov, “On the best approximations and derivatives of functions of Hardy classes,” in: Investigations on the Theory of Approximation of Functions [in Russian] (1987), pp. 201–215.Google Scholar
  70. 70.
    V. V. Arestov, “On integral inequalities for trigonometric polynomials and their derivatives,” Izv. Akad. Nauk SSSR, Ser. Mat., 41, No. 1, 3–22 (1981).MathSciNetGoogle Scholar
  71. 71.
    K. Mahler, “On the zeros of the derivative of a polynomial,” Proc. Roy. Soc. London, 264, 145–154 (1961).MATHMathSciNetCrossRefGoogle Scholar
  72. 72.
    E. A. Storozhenko “On one Mahler problem on the zeros of a polynomial and its derivative,” Mat. Sb., 187, No. 5, 111–120.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • B. S. Kashin
    • 1
  • N. P. Korneichuk
    • 2
  • P. L. Ul’yanov
    • 3
  • I. A. Shevchuk
    • 4
  • V. A. Andrienko
    • 5
  1. 1.Mathematical InstituteRussian Academy of SciencesMoscow
  2. 2.Institute of MathematicsUkrainian Academy of SciencesKiev
  3. 3.Moscow UniversityMoscow
  4. 4.Shevchenko National UniversityKiev
  5. 5.South-Ukrainian Pedagogic UniversityOdessa

Personalised recommendations