Journal of Molecular Evolution

, Volume 32, Issue 2, pp 187–198 | Cite as

cDNA and amino acid sequences of rainbow trout (Oncorhynchus mykiss) lysozymes and their implications for the evolution of lysozyme and lactalbumin

  • André Dautigny
  • Ellen M. Prager
  • Danièle Pham-Dinh
  • Jacqueline Jollès
  • Farzad Pakdel
  • Bjørn Grinde
  • Pierre Jollès
Article

Summary

The complete 129-amino-acid sequences of two rainbow trout lysozymes (I and II) isolated from kidney were established using protein chemistry microtechniques. The two sequences differ only at position 86, I having aspartic acid and II having alanine. A cDNA clone coding for rainbow trout lysozyme was isolated from a cDNA library made from liver mRNA. Sequencing of the cloned cDNA insert, which was 1 kb in length, revealed a 432-bp open reading frame encoding an amino-terminal peptide of 15 amino acids and a mature enzyme of 129 amino acids identical in sequence to II. Forms I and II from kidney and liver were also analyzed using enzymatic amplification via PCR and direct sequencing; both organs contain mRNA encoding the two lysozymes. Evolutionary trees relating DNA sequences coding for lysozymesc and α-lactalbumins provide evidence that the gene duplication giving rise to conventional vertebrate lysozymesc and to lactalbumin preceded the divergence of fishes and tetrapods about 400 Myr ago. Evolutionary analysis also suggests that amino acid replacements may have accumulated more slowly on the lineage leading to fish lysozyme than on those leading to mammal and bird lysozymes.

Key words

Conventional lysozymes Calciumbinding lysozymes Gene duplications Tetrapods Insects Evolutionary trees Statistical testing Replacement mutations Base composition PCR 

Abbreviations

cDNA

complementary DNA

Myr

million years

SSC

150 mM sodium chloride, 15 mM sodium citrate pH 7.0

PCR

polymerase chain reaction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aviv H, Leder P (1972) Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acidcellulose. Proc Natl Acad Sci USA 69:1408–1412PubMedCrossRefGoogle Scholar
  2. Brand SJ, Fuller PJ (1988) Differential gastrin gene expression in rat gastrointestinal tract and pancreas during neonatal development. J Biol Chem 263:5341–5347PubMedGoogle Scholar
  3. Chen EY, Seeburg PH (1985) Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170PubMedCrossRefGoogle Scholar
  4. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299PubMedCrossRefGoogle Scholar
  5. Crestfield AM, Moore S, Stein WH (1963) The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem 238:622–627PubMedGoogle Scholar
  6. Cross M, Renkawitz R (1990) Repetitive sequence involvement in the duplication and divergence of mouse lysozyme genes. EMBO J 9:1283–1288PubMedGoogle Scholar
  7. Doherty PJ, Huesca-Contreras M, Dosch HM, Pan S (1989) Rapid amplification of complementary DNA from small amounts of unfractionated RNA. Anal Biochem 177:7–10PubMedCrossRefGoogle Scholar
  8. Duckworth ML, Gait MJ, Goelet P, Hong GF, Singh M, Titmas RC (1981) Rapid synthesis of oligodeoxyribonucleotides VI. Efficient, mechanised synthesis of heptadecadeoxyribonucleotides by an improved solid phase phosphotriester route. Nucleic Acids Res 9:1691–1706PubMedGoogle Scholar
  9. Godovac-Zimmermann J, Conti A, Napolitano L (1988) The primary structure of donkey (Equus asinus) lysozyme contains the Ca(II) binding site of α-lactalbumin. Biol Chem Hoppe-Seyler 369:1109–1115PubMedGoogle Scholar
  10. Grinde B, Jollès J, Jollès P (1988) Purification and characterization of two lysozymes from rainbow trout (Salmo gairdneri). Eur J Biochem 173:269–273PubMedCrossRefGoogle Scholar
  11. Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25:263–269PubMedCrossRefGoogle Scholar
  12. Higuchi R, von Beroldingen CH, Sensabaugh GF, Erlich HA (1988) DNA typing from single hairs. Nature 332:543–546PubMedCrossRefGoogle Scholar
  13. Irwin DM, Wilson AC (1989) Multiple cDNA sequences and the evolution of bovine stomach lysozyme. J Biol Chem 264: 11387–11393PubMedGoogle Scholar
  14. Irwin DM, Wilson AC (1990) Concerted evolution of ruminant stomach lysozymes. Characterization of lysozyme cDNA clones from sheep and deer. J Biol Chem 265:4944–4952PubMedGoogle Scholar
  15. Jollès J, Van Leemputten E, Mouton A, Jollès P (1972) Amino acid sequence of guinea-hen egg-white lysozyme. Biochim Biophys Acta 257:497–510PubMedGoogle Scholar
  16. Jollès J, Jollès P, Bowman BH, Prager EM, Stewart C-B, Wilson AC (1989) Episodic evolution in the stomach lysozymes of ruminants. J Mol Evol 28:528–535PubMedGoogle Scholar
  17. Jollès J, Prager EM, Alnemri ES, Jollès P, Ibrahimi IM, Wilson AC (1990) Amino acid sequences of stomach and nonstomach lysozymes of ruminants. J Mol Evol 30:370–382PubMedCrossRefGoogle Scholar
  18. Jollès P (1976) A possible physiological function of lysozyme. Biomédecine 25:275–276PubMedGoogle Scholar
  19. Jollès P, Jollès J (1984) What's new in lysozyme research? Mol Cell Biochem 63:165–189PubMedCrossRefGoogle Scholar
  20. Kitagawa Y, Tsunasawa S, Tanaka N, Katsube Y, Sakiyama F, Asada K (1986) Amino acid sequence of coppper, zinc-superoxide dismutase from spinach leaves. J Biochem 99:1289–1298PubMedGoogle Scholar
  21. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NYGoogle Scholar
  22. Nitta K, Sugai S (1989) The evolution of lysozyme and α-lactalbumin. Eur J Biochem 182:111–118PubMedCrossRefGoogle Scholar
  23. Prager EM, Wilson AC (1988) Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J Mol Evol 27:326–335PubMedCrossRefGoogle Scholar
  24. Reinisch CL, Litman GW (1989) Evolutionary immunobiology. Immunology Today 10:278–281PubMedCrossRefGoogle Scholar
  25. Rodríguez R, Menéndez-Arias L, González de Buitrago G, Gavilanes JG (1987) Structure of the pigeon lysozyme and its relationship with other typec lysozymes. Comp Biochem Physiol 88B:791–796Google Scholar
  26. Romer AS (1966) Vertebrate paleontology, ed 3. University of Chicago Press, Chicago ILGoogle Scholar
  27. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  28. Stewart C-B, Schilling JW, Wilson AC (1987) Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330:401–404PubMedCrossRefGoogle Scholar
  29. von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184:99–105CrossRefGoogle Scholar

Copyright information

© Springer-Verlag York Inc 1991

Authors and Affiliations

  • André Dautigny
    • 1
  • Ellen M. Prager
    • 2
  • Danièle Pham-Dinh
    • 1
  • Jacqueline Jollès
    • 1
  • Farzad Pakdel
    • 3
  • Bjørn Grinde
    • 4
  • Pierre Jollès
    • 1
  1. 1.Laboratory of ProteinsUniversity of Paris VParix Cedex 06France
  2. 2.Division of Biochemistry and Molecular BiologyUniversity of CaliforniaBerkeleyUSA
  3. 3.Molecular Biology LaboratoryUniversity of Rennes IRennesFrance
  4. 4.National Institute of Public HealthOslo 4Norway

Personalised recommendations