Journal of Molecular Evolution

, Volume 32, Issue 2, pp 101–104 | Cite as

Pyrophosphate formation as the most efficient condensation reaction of activated nucleotides

  • Libaniel Rodriguez
  • Leslie E. Orgel


When an oligonucleotide primer pG10 is incubated with the nucleotide analogue 9-[3-hydroxy-2-(hydroxymethyl)prop-1-yl] guanine diphosphate (\(p\overline{\overline G} p\), I) in the presence of poly(C), addition of the monomer occurs almost exclusively at the 5′-terminal phosphate rather than the 3′-terminalcis-glycol. The implications of this finding in the context of prebiotic condensation reactions are discussed.

Key words

Pyrophosphate formation Template-directed synthesis Nucleotide analogues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Gilham PT (1962) An addition reaction specific for uridine and guanosine nucleotides and its application to the modification of ribonuclease action. J Am Chem Soc 84: 687–688CrossRefGoogle Scholar
  2. Hill AR Jr, Nord LD, Orgel LE, Robins RK (1988) Cyclization of nucleotide analogues as an obstacle to polymerization. J Mol Evol 28: 170–171PubMedCrossRefGoogle Scholar
  3. Inoue T, Orgel LE (1982) Oligomerization of (guanosine 5′-phosphor)-2-methyl-imidazolide on poly(C). J Mol Biol 162: 201–217PubMedCrossRefGoogle Scholar
  4. Joyce GF (1987) Nonenzymatic template-directed synthesis of informational macromolecules. Cold Spring Harbor Symp Quant Biol LII: 41–51Google Scholar
  5. Joyce GF, Inoue T, Orgel LE (1984) Non-enzymatic template directed synthesis of RNA random copolymers. Poly(C,U) templates. J Mol Biol 176:279–306PubMedCrossRefGoogle Scholar
  6. Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) A case for an ancestral genetic system involving simple analogues of the nucleotides templates. J Mol Evol 29: 101–107Google Scholar
  7. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38: 381–393PubMedCrossRefGoogle Scholar
  8. Orgel LE (1986) Mini review. RNA catalysis and the origins of life. J Theor Biol 123: 127–149PubMedCrossRefGoogle Scholar
  9. Schwartz AW, Orgel LE (1985) Template-directed synthesis of novel, nucleic acid-like structures. Science 228: 585–587PubMedCrossRefGoogle Scholar
  10. Schwartz AW, Visscher J, Bakker CG, Niessen J (1987) Nucleic acid-like structures. II. Polynucleotide analogues as possible primitive precursors of nucleic acids. Origins Life 17: 351–357CrossRefGoogle Scholar
  11. Sulston J, Lohrmann R, Orgel LE, Miles HT (1968) Nonenzymatic synthesis of oligoadenylates on a polyuridylic acid template. Proc Natl Acad Sci USA. 59: 726–733PubMedCrossRefGoogle Scholar
  12. Tohidi M, Orgel LE (1989) Some acyclic analogues of nucleotides and their template-directed reactions. J Mol Evol 28: 367–373PubMedGoogle Scholar
  13. Visscher J, Schwartz AW (1988) Template-directed synthesis of acyclic oligonucleotide analogues. J Mol Evol 28: 3–6PubMedCrossRefGoogle Scholar
  14. White HB III (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7: 101–104PubMedCrossRefGoogle Scholar
  15. Woese CR (1967) The evolution of the genetic code, chapter 7. In: The genetic code. Harper & Row, New York, pp 179–195Google Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • Libaniel Rodriguez
    • 1
  • Leslie E. Orgel
    • 1
  1. 1.The Salk Institute for Biological StudiesSan DiegoUSA

Personalised recommendations