Journal of Molecular Evolution

, Volume 32, Issue 2, pp 93–100

Origin of fatty acid synthesis: Thermodynamics and kinetics of reaction pathways

  • Arthur L. Weber
Article

Summary

The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, we here propose an alternative pathway of primitive fatty acid synthesis that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy (ATP). Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.

Key words

Primitive fatty acid synthesis Evolution of metabolism Molecular evolution Prebiotic Origin of metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alborz M, Douglas, KT, Rullo GR, Yaggi NF (1982) Malonycoenzyme A models. Part 2. The methylene deprotonation step of the E1 cB acyl transfer of malonic acid thiolmonoesters. J Chem Soc Perkin Trans 2:1681–1687Google Scholar
  2. Bender ML, Bergeron RJ, Komiyama M (1984) The bioorganic chemistry of enzymatic catalysis. Wiley, New YorkGoogle Scholar
  3. Beytia ED, Porter JW (1976) Biochemistry of polyisoprenoid biosynthesis. In: Snell EE (ed) Annual review of biochemistry, vol 45. Annual Reviews, Palo Alto CA, p 113Google Scholar
  4. Borowska Z, Mauzerall D (1988) Photoreduction of carbon dioxide by aqueous ferrous ion: an alternative to the strongly reducing atmosphere for the chemical origin of life. Proc Natl Acad Sci USA 85:6577–6580PubMedCrossRefGoogle Scholar
  5. Broda E (1971) The evolution of bioenergetic processes. In: Butler JAV, Noble D (eds) Progress in biophysics and molecular biology, vol 21. Pergamon, New York, p 145Google Scholar
  6. Bruice TC, Benkovic SJ (1966a) Bioorganic mechanisms, vol 1. Benjamin, New York, p 259Google Scholar
  7. Bruice TC, Benkovic SJ (1966b) Bioorganic mechanisms, vol 2. Benjamin, New York, p 181Google Scholar
  8. Busca G, Lamotte J, Lavalley J, Lorenzelli V (1987) FT-IR study of the adsorption and transformation of formaldehyde on oxide surfaces. J Am Chem Soc 109:5197–5202CrossRefGoogle Scholar
  9. Buvet R, Le Port L (1973) Non-enzymatic origin of the metabolism. Space Life Sci 4:434–447PubMedCrossRefGoogle Scholar
  10. Caplow M (1965) Studies of the mechanism of biotin catalysis. J Am Chem Soc 87:5447–5785CrossRefGoogle Scholar
  11. Clarke PH, Elsden SR (1980) The earliest catabolic pathways. J Mol Evol 15:333–338PubMedCrossRefGoogle Scholar
  12. Douglas KT (1986) Elimination-addition pathways for thiol esters. Acc Chem Res 19:186–192CrossRefGoogle Scholar
  13. Eakin RE (1963) An approach to the evolution of metabolism. Proc Natl Acad Sci USA 49:360–366PubMedCrossRefGoogle Scholar
  14. Eichberg J, Sherwood E, Epps DE, Oró J (1977) Cyanamide mediated syntheses under plausible primitive earth conditions. IV. The synthesis of acylglycerols. J Mol Evol 10:221–230PubMedCrossRefGoogle Scholar
  15. Epps DE, Sherwood E, Eichberg J, Oró J (1978) Cyanamide mediated syntheses under plausible prebiotic conditions. V. The synthesis of phosphatidic acids. J Mol Evol 11:279–292PubMedCrossRefGoogle Scholar
  16. Epps DE, Nooner DW, Eichberg J, Sherwood E, Oró J (1979) Cyanamide mediated synthesis under plausible primitive conditions. VI. The synthesis of glycerol and glycerophosphates. J Mol Evol 14:235–241PubMedCrossRefGoogle Scholar
  17. Feather MS, Harris JF (1973) Dehydration reactions of carbohydrates. In: Tipson RS, Horton D (eds) Advances in carbohydrate chemistry and biochemistry, vol 28. Academic Press, New York, p 161Google Scholar
  18. Fedoronko M, Konigstein J (1969) Kinetics of mutual isomerization of trioses and their dehydration to methylglyoxal. Collect Czech Chem Commun 34:3881–3894Google Scholar
  19. Feingold DS, Hoffee PA (1972) Other deoxy sugar aldolases. In: Boyer PD (ed) The enzymes, ed 3, vol VII. Academic Press, New York, p 303Google Scholar
  20. Fluharty AL (1974) Biochemistry of the thiol group. In: Pata S (ed) The chemistry of the thiol group, part 1. Wiley, London, p 589Google Scholar
  21. Fouquet G, Merger F, Platz R (1979) Über die Tischtschenkoreaction von aldolen. Justus Liebigs Ann Chem 1591–1601Google Scholar
  22. Forsen S, Nilsson (1970) Enolization. In: Zabicky J (ed) The chemistry of the carbonyl group, vol 2. Interscience, New York, p 157Google Scholar
  23. Gabel NW, Ponnamperuma C (1967) Model for origin of monosaccharides. Nature (London) 216:453–454CrossRefGoogle Scholar
  24. Gehring U, Lynen F (1972) Thiolase. In: Boyer PD (ed) The enzymes, ed 3, vol 7. Academic Press, New York, p 391Google Scholar
  25. Getoff N, Scholes G, Weiss J (1960) Reduction of carbon dioxide in aqueous solutions under the influence of radiation. Tetrahedron Lett 17–23Google Scholar
  26. Hall SS, Doweyko AM, Jordan F (1978) Glyoxalase I enzyme studies. 4. General base catalyzed enediol proton transfer rearrangement of methyl- and phenylglyoxalglutathionylhemithiol acetal to S-lactoyl and S-mandeloyglutathione followed by hydrolysis. A model for the glyoxalase enzyme system. J Am Chem Soc 100:5934–5939CrossRefGoogle Scholar
  27. Harsch G, Harsch M, Bauer H, Voelter W (1983) Produktverteilung und mechanismus der gesamtreaktion der formosereaktion. Z Naturforsch Teil B 38:1269–1280Google Scholar
  28. Harsch G, Bauer H, Voelter W (1984) Kinetik, katalyse und mechanismus der sekundarreaktion in der schlussphase der formose-reaktion. Justus Liebigs Ann Chem 623–635Google Scholar
  29. Hartman H (1975) Speculations on the origin and evolution of metabolism. J Mol Evol 4:359–370PubMedCrossRefGoogle Scholar
  30. Hauge JG (1956) On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. IV. Kinetic studies. J Am Chem Soc 78:5266–5272CrossRefGoogle Scholar
  31. Higgins MJP, Kornblatt JA, Rudney H (1972) Acyl-CoA ligases. In: Boyer PD (ed) The enzymes, ed 3, vol VII. Academic Press, New York, p 407Google Scholar
  32. Jencks WP (1969a) Catalysis in chemistry and enzymology, chapter 5. McGraw-Hill, New York, p 282Google Scholar
  33. Jencks WP (1969b) Catalysis in chemistry and enzymology, chapter 1. McGraw-Hill, New York, p 7Google Scholar
  34. Jencks WP (1975) Binding energy, specificity, and enzymatic catalysis: the circle effect. In: Meister A (ed) Advances in enzymology, vol 43. Wiley, New York, p 219Google Scholar
  35. Jencks WP (1976) Free energies of hydrolysis and decarboxylation. In: Fasman GD (ed) Handbook of biochemistry and molecular biology, ed 3. Physical and chemical data, vol 1. CRC Press, Cleveland, p 296Google Scholar
  36. Jones WJ, Nagle DP, Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 51:135–177PubMedGoogle Scholar
  37. Keinan E, Greenspoon N (1989) Reduction of α,β-unsaturated carbonyl compounds. In: Patai S (ed) The chemistry of enones. Wiley, New York, p 923Google Scholar
  38. Knappe J (1970) Mechanism of biotin action. In: Snell EE (ed) Annual review of biochemistry, vol 39. Annual Reviews, Palo Alto CA, p 757Google Scholar
  39. Knowles JR (1989) The mechanism of biotin-dependent enzymes. In: Richardson CC (ed) Annual review of biochemistry, vol 58. Annual Reviews, Palo Alto CA, p 195Google Scholar
  40. Kobuke Y, Yoshida J (1978) Decarboxylative acylation of thiolmalonate. A model for the biosynthesis of fatty acids and polyketides. Tetrahedron Lett 367–370Google Scholar
  41. Koningsberger VV, Overbeek JTG (1955) The hydrolysis and aminolysis of ethyl thioacetate. III. Rate constants at 25°C, activation energies and probability factors. Koninkl Ned Acad Wetenschap Proc, Ser B 58:49–55Google Scholar
  42. Krampitz LO (1969) Catalytic functions of thiamine diphosphate. In: Snell EE (ed) Annual review of biochemistry, vol 38. Annual Reviews, Palo Alto CA, p 213Google Scholar
  43. Lindstrom LA (1979) Formation and further reaction of 3-deoxytetrulose during treatment of (1→4)-linked xylose oligomers with alkali. Carbohydr Res 69:269–271CrossRefGoogle Scholar
  44. Loach PA (1976) Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies. In: Fasman GD (ed) Handbook of biochemistry and molecualr biology, ed 3, vol 1. CRC Press, Cleveland, p 122Google Scholar
  45. Lynen F, Wieland O (1955) β-Ketoreductase. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 1. Academic Press, New York, p 566CrossRefGoogle Scholar
  46. Malmstrom BG (1961) Hydration and dehydration (survey). In: Boyer PD, Lardy H, Myrback K (eds) The enzymes, ed 2, vol 5. Academic Press, New York, p 455Google Scholar
  47. Miller SL (1957) The formation of organic compounds on the primitive Earth. Ann NY Acad Sci 69:260–275PubMedGoogle Scholar
  48. Moss J, Lane MD (1971) The biotin-dependent enzymes. In: Meister A (ed) Advances in enzymology, vol 35. Interscience, New York, p 321Google Scholar
  49. Miziorko HM (1985) 3-Hydroxy-3-methylglutaryl-CoA synthase from chicken liver. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 110, part A. Academic Press, New York, p 19Google Scholar
  50. Mizuno T, Weiss AH (1974) Synthesis and utilization of formose sugars. In: Tipson RS, Horton D (eds) Advances in carbohydrate chemistry and biochemistry, vol 29. Academic Press, New York, p 173Google Scholar
  51. Nooner DW, Oró J (1979) Synthesis of fatty acids by a closed system Fischer-Tropsch process. In: Kugler EL, Steffgen FW (eds) Hydrocarbon synthesis from carbon monoxide and hydrogen. Advances in chemistry series, no. 178. American Chemical Society, Washington DC, p 159Google Scholar
  52. Ogita T, Knowles JR (1988) On the intermediacy of carboxyphosphate in biotin-dependent carboxylations. Biochemistry 27:8028–8033PubMedCrossRefGoogle Scholar
  53. Page MI (1977) Entropy, binding energy, and enzymatic catalysis. Angew Chem Int Ed Engl 16:449–459CrossRefGoogle Scholar
  54. Patai S (ed) (1966) The chemistry of the carbonyl group. Interscience, New YorkGoogle Scholar
  55. Pigman W, Anet EFLJ (1972) Mutarotations and actions of acids and bases. In: Pigman W, Horton D (eds) The carbohydrates, vol 1A. Academic Press, New York, p 165Google Scholar
  56. Pinto JP, Gladstone GR, Yung YL (1980) Photochemical production of formaldehyde in earth's primitive atmosphere. Science 210:183–185CrossRefGoogle Scholar
  57. Porter JW, Spurgeon SL (eds) (1981) Biosynthesis of isoprenoid compounds. Wiley, New YorkGoogle Scholar
  58. Poulter D, Rilling HC (1981) Prenyl transferases and isomerase. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds, vol 1. Wiley, New York, p 161Google Scholar
  59. Qureshi N, Porter JW (1981) Conversion of acetyl-coenzyme A to isopentenyl pyrophosphate. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds, vol 1. Wiley, New York, p 47Google Scholar
  60. Rao M, Eichberg J, Oró J (1987) Synthesis of phosphatidylethanolamine under possible primitive earth conditions. J Mol Evol 25:1–6PubMedCrossRefGoogle Scholar
  61. Rastetter WH, Adams J (1981) α-Keto acid dehydrogenases: a chemical model. J Org Chem 46:1882–1887CrossRefGoogle Scholar
  62. Reid C, Orgel LE (1967) Synthesis of sugars in potentially prebiotic conditions. Nature 216:455PubMedCrossRefGoogle Scholar
  63. Sauers CK, Jencks WP, Groh S (1975) The alcohol-bicarbonate-water system. Structure-reactivity studies on the equilibria for formation of alkyl monocarbonates and on the rates of their decomposition in aqueous alkali. J Am Chem Soc 97:5546–5553CrossRefGoogle Scholar
  64. Sellin S, Mannervik B (1983) Reversal of the reaction catalyzed by glyoxalase 1. Calculation of the equilibrium constant for the enzymatic reaction. J Biol Chem 258:8872–8875PubMedGoogle Scholar
  65. Shinkai S, Hamada H, Kusano Y, Manabe O (1979) Coenzyme models. Part 16. Studies of general-acid catalysis in the NADH model reduction. J Chem Soc Perkin Trans 2, 699–702Google Scholar
  66. Speck JC (1958) The Lobry de Bruyn-Alberda van Ekenstein transformation. In: Wolfrom ML (ed) Advances in carbohydrate chemistry, vol 13. Academic Press, New York, p 63Google Scholar
  67. Stern JR (1961) Crotonase. In: Boyer PD, Lardy H, Myrback K (eds) The enzymes, ed 2, vol 5. Academic Press, New York, p 511Google Scholar
  68. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley, New YorkGoogle Scholar
  69. Theander O (1962) Dicarbonyl carbohydrates. In: Wolfrom ML, Tipson RS (eds) Advances in carbohydrate chemistry, vol 17. Academic Press, New York, p 223Google Scholar
  70. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180PubMedGoogle Scholar
  71. Tilley BF, Porter DW, Gracy RW (1973) Metal-ion catalysis of aldose-ketose isomerizations in acidic solutions. Carbohydr Res 27:289–296PubMedCrossRefGoogle Scholar
  72. Vander Jagt DL, Daub E, Krohn JA, Han LB (1975) Effects of pH and thiols on the kinetics of yeast glyoxalase 1. An evaluation of the random pathway mechanism. Biochemistry 14: 3669–3675CrossRefGoogle Scholar
  73. Weber AL (1981) Formation of pyrophosphate, tripolyphosphate, and phosphorylimidazole with the thioester, N,S-diacetylcysteine, as the condensing agent. J Mol Evol 18:24–29PubMedCrossRefGoogle Scholar
  74. Weber AL (1984) Nonenzymatic formation of “energy-rich” lactoyl and glyceroyl thioesters from glyceraldehyde and a thiol. J Mol Evol 20:157–166PubMedCrossRefGoogle Scholar
  75. Weber AL (1985) Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution. J Mol Evol 21:351–355PubMedCrossRefGoogle Scholar
  76. Weber AL (1987) The triose model: glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions. Origins Life 17:107–119CrossRefGoogle Scholar
  77. Weber AL, Hsu V (1990) Energy-rich glyceric acid oxygen esters: implications for the origin of glycolysis. Origins Life 20: 145–150CrossRefGoogle Scholar
  78. Wheeler OH (1966) Reduction of carbonyl groups. In: Patai S (ed) The chemistry of the carbonyl group. Interscience, London, p 507Google Scholar
  79. Wilson GE, Hess A (1980) Acylation of thiol ester enolate anions. J Org Chem 45:2766–2772CrossRefGoogle Scholar
  80. Zabicky J (ed) (1970) The chemistry of the carbonyl group, vol 2. Interscience, New YorkGoogle Scholar
  81. Zubay G (1983) Biochemistry, chapter 13. Addison-Wesley, Reading MA, p 471Google Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • Arthur L. Weber
    • 1
  1. 1.The Salk Institute for Biological StudiesSan DiegoUSA

Personalised recommendations