The evolution of dispersal polymorphisms in insects: The influence of habitats, host plants and mates

  • Robert F. Denno
Special Issue Dispersal Polymorphism of Insects: Its Adaptation and Evolution Part 1


Wing-dimorphic, delphacid planthoppers were used to test hypotheses concerning the effects of habitat persistence and architectural complexity on the occurrence of dispersal. For reasons concerning both the durational stability of the habitat and the reduced availability of mates, selection has favored high levels of dispersal in species occupying temporary habitats. Flightlessness predominates in species occupying persistent habitats, and is promoted by a phenotypic trade-off between reproductive success and flight capability. Wings are retained in tree-inhabiting species, probably for reasons concerning the more effective negotiation of three-dimensional habitats. In contrast, flightlessness is characteristic of those species inhabiting low profile host plants. For several delphacid genera, migratory species are larger than their sedentary congeners. Because body size and fecundity are positively related in planthoppers, the large body size observed in migratory taxa may result from selection for increased fecundity in colonizing species.

Key words

dispersal habitat persistence host plant architecture life history evolution wing polymorphism 


  1. Barbosa, P., V. Krischik and D. Lance (1989) Life-history traits of forestinhabiting flightless Lepidoptera.Am. Midl. Nat. 122: 262–274.CrossRefGoogle Scholar
  2. Brown, V. K. (1982) Size and shape as ecological discriminants in successional communities of Heteroptera.Biol. J. Linn. Soc. 18: 279–290.Google Scholar
  3. Bull, J. J., C. Thompson, D. Ng and R. Moore (1987) A model for natural selection of genetic migration.Am. Nat. 129: 143–157.CrossRefGoogle Scholar
  4. Cheng, J., Holt, J. and G. A. Norton (1994) A systems approach to planthopper population dynamics and its contribution to the definition of pest management options. pp. 635–655.In R. F. Denno and T. J. Perfect (eds.)Planthoppers: their ecology and management. Chapman & Hall, New York.Google Scholar
  5. Claridge, M. (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution.Annu. Rev. Entomol. 30: 297–317.CrossRefGoogle Scholar
  6. Cook, A. and T. J. Perfect (1985) The influence of immigration on population development ofNilaparbata lugens andSogatella furcifera and its interaction with immigration by predators.Crop Protection 4: 423–433.CrossRefGoogle Scholar
  7. Coyne, J. A. and B. Milstead (1987) Long-distance migration ofDrosophila. 3. Dispersal ofD. melanogaster alleles from a Maryland orchard.Am. Nat. 130: 70–82.CrossRefGoogle Scholar
  8. den Boer, P. J. (1981) On the survival of populations in a heterogeneous and variable environment.Oecologia 50: 39–53.CrossRefGoogle Scholar
  9. den Boer, P. J., H. P. T. van Huizen, W. den-Boer Daanje, B. Aukema and C. F. M. den Bieman (1980) Wing polymorphism and dimorphism in ground beetles as stages in an evolutionary process (Coleoptera: Carabidae).Entomol. Generalis 6: 107–134.Google Scholar
  10. Denno, R. F. (1978) The optimum population strategy for planthoppers (Homoptera: Delphacidae) in stable marsh habitats.Can. Entomol. 110: 135–142.CrossRefGoogle Scholar
  11. Denno, R. F. (1983) Tracking variable host plants in space and time. pp. 291–341.In R. F. Denno and M. S. McClure (eds.)Variable plants and herbivores in natural and managed systems. Academic Press, New York.Google Scholar
  12. Denno, R. F. (1994) Life history variation in planthoppers. pp. 163–215.In R. F. Denno and T. J. Perfect (eds.)Planthoppers: their ecology and management. (Chapman & Hall, New York.Google Scholar
  13. Denno, R. F. and H. Dingle (1981) Consideration for the development of a more general life history theory. pp. 1–6.In R. F. Denno and H. Dingle (eds.)Insect life history patterns: habitat and geographic variation. Springer, New York.Google Scholar
  14. Denno, R. F., L. W. Douglass and D. Jacobs (1985) Crowding and host plant nutrition: environmental determinants of wing-form inProkelisia marginata.Ecology 66: 1588–1596.CrossRefGoogle Scholar
  15. Denno, R. F. and E. E. Grissell (1979) The adaptiveness of wingdimorphism in the salt marsh-inhabiting planthopper,Prokelisia marginata (Homoptera: Delphacidae).Ecology 60: 221–236.CrossRefGoogle Scholar
  16. Denno, R. F. and E. S. McCloud (1985) Predicting fecundity from body size in the planthopper,Prokelisia marginata (Homoptera: Delphacidae).Environ. Entomol. 14: 846–849.Google Scholar
  17. Denno, R. F., K. L. Olmstead and E. S. McCloud (1989) Reproductive cost of flight capability: A comparison of life history traits in wing dimorphic planthoppers.Ecol. Entomol. 14: 31–44.Google Scholar
  18. Denno, R. F., M. J. Raupp and D. W. Tallamy (1981) Organization of a guild of sap-feeding insects: Equilibrium vs. nonequilibrium coexistence. pp. 151–181.In R. F. Denno and H. Dingle (eds.)Insect life history patterns: habitat and geographic variation. Springer, New York.Google Scholar
  19. Denno, R. F. and G. K. Roderick (1990) Population biology of planthoppers.Annu. Rev. Entomol. 35: 489–520.CrossRefGoogle Scholar
  20. Denno, R. F. and G. K. Roderick (1992) Density-related dispersal in planthoppers: Effects of interspecific crowding.Ecology 73: 1323–1334.CrossRefGoogle Scholar
  21. Denno, R. F., G. K. Roderick, K. L. Olmstead and H. G. Döbel (1991) Density-related migration in planthoppers (Homoptera: Delphacidae): The role of habitat persistence.Am. Nat. 138: 1513–1541.CrossRefGoogle Scholar
  22. Dingle, H. (1985) Migration. pp. 375–415.In G. A. Kerkut and L. I. Gilbert (eds.)Comprehensive insect physiology, biochemistry and pharmacology, Vol. 9, Behavior, Pergamon Press, New York.Google Scholar
  23. Fairbairn, D. J. and T. C. Butler (1990) Correlated traits for migration in the Gerridae (Hemiptera, Heteroptera): A field test.Ecol. Entomol. 15: 131–142.Google Scholar
  24. Giffard, W. M. (1922) The distribution and island endemism of Hawaiian Delphacidae (Homoptera) with additional lists of their food plants.Proc. Hawaiian Entomol. Soc. 1: 103–118.Google Scholar
  25. Harrison, R. G. (1980) Dispersal polymorphisms in insects.Annu. Rev. Ecol. Syst. 11: 95–118.CrossRefGoogle Scholar
  26. Hastings, A. (1982) Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates.J. Math. Biol. 16: 49–56.Google Scholar
  27. Heady, S. E. and R. F. Denno (1991) Reproductive isolation inProkelisia planthoppers: Acoustical differentiation and hybridization failure.J. Insect Behavior 4: 367–390.CrossRefGoogle Scholar
  28. Ichikawa, T. (1977) Sexual communications in planthoppers. pp. 84–94.In The rice brown planthopper. Food and Fertilizer Technology Center for the Asian and Pacific Region, Taipei.Google Scholar
  29. Ichikawa, T. (1982) Density-related changes in male-male competitive behavior in the rice brown planthopper,Nilaparbata lugens (Stål) (Homoptera: Delphacidae).Appl. Entomol. Zool. 17: 439–452.Google Scholar
  30. Ichikawa, T., M. Sakuna and S. Ishii (1975) Substrate vibrations: Mating signal of three species of planthoppers which attack the rice plant (Homoptera: Delphacidae).Appl. Entomol. Zool. 10: 162–171.Google Scholar
  31. Iwanaga, K. and S. Tojo (1986) Effects of juvenile hormone and rearing density on wing dimorphism and oöcyte development in the brown planthopper,Nilaparvata lugens.J. Insect Physiol. 32: 585–590.CrossRefGoogle Scholar
  32. Iwanaga, K. and S. Tojo (1988) Comparative studies on the sensitivities to nymphal density, photoperiod and rice plant stage in two strains of the brown planthopper,Nilaparvata lugens (Stål) (Homoptera: Delphacidae).Jpn. J. Appl. Entomol. Zool. 32: 68–74.Google Scholar
  33. Iwanaga, K., F. Nakasuji and S. Tojo (1987) Wing dimorphism in Japanese and foreign strains of the brown planthopper,Nilaparvata lugens.Entomol. Exp. Appl. 43: 3–10.CrossRefGoogle Scholar
  34. Kisimoto, R. (1965) Studies on the polymorphism and its role playing in the population growth of the brown planthopper,Nilaparvata lugens Stål.Bull. Shikoku Agric. Exp. Sta. 13: 1–106.Google Scholar
  35. Kisimoto, R. (1976) Synoptic weather conditions inducing longdistance immigration of planthoppers,Sogatella furcifera Horvath andNilaparvata lugens Stål.Ecol. Entomol. 1: 95–109.Google Scholar
  36. Kisimoto, R. and L. J. Rosenberg (1994) Long-distance migration in delphacid planthoppers. pp. 302–322.In. R. F. Denno and T. J. Perfect (eds.)Planthoppers: their ecology and management. Chapman & Hall, New York.Google Scholar
  37. Kuno, E. (1979) Ecology of the brown planthopper in temperate regions. pp. 45–60.In Brown planthopper: threat to rice production in Asia. International Rice Research Institute. Los Baños.Google Scholar
  38. Kuno, E. (1981) Dispersal and the persistence of populations in unstable habitats: a theoretical note.Oecologia 49: 123–126.CrossRefGoogle Scholar
  39. New, T. R. (1974) Psocoptera.Royal Entomological Society handbooks for the identification of British insects, Part 7. 102pp.Google Scholar
  40. Raatikainen, M. and A. Vasarainen (1976) Composition, zonation and origin of the leafhopper fauna of oatfields in Finland.Ann. Zool. Fennici 13: 1–24.Google Scholar
  41. Reddingius, J. and P. J. den Boer (1970) Simulation experiments illustrating stabilization of animal numbers by spreading the risk.Oecologia 5: 240–284.CrossRefGoogle Scholar
  42. Reuter, O. M. (1875) Remarques sur le polymorphisme des hemipteres.Ann. Soc. Entomol. France 5: 225–236.Google Scholar
  43. Roderick, G. K. (1987)Ecology and evolution of dispersal in California populations of a salt marsh insect, Prokelisia marginata. Ph. D. Dissertation. University of California, Berkeley, California.Google Scholar
  44. Roff, D. A. (1974) Spatial heterogeneity and the persistence of populations.Oecologia 15: 245–258.CrossRefGoogle Scholar
  45. Roff, D. A. (1984) The cost of being able to fly: A study of wing polymorphism in two species of crickets.Oecologia 63: 30–37.CrossRefGoogle Scholar
  46. Roff, D. A. (1986) The evolution of wing dimorphism in insects.Evolution 40: 1009–1020.CrossRefGoogle Scholar
  47. Roff, D. A. (1990) The evolution of flightlessness in insects.Ecol. Monogr. 60: 389–421.CrossRefGoogle Scholar
  48. Roff, D. A. (1991) Life history consequences of bioenergetic and biochemical constraints on migration.Amer. Zool. 31: 205–215.Google Scholar
  49. Roff, D. A. and D. J. Fairbairn (1991) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta.Amer. Zool. 31: 243–251.Google Scholar
  50. Solbreck, C. (1978) Migration, diapause, and direct development as alternative life histories in a seed bug,Neacoryphus bicrucis., pp. 195–217.In H. Dingle (ed.)The evolution of insect migration and diapause. Springer, New York.Google Scholar
  51. Southwood, T. R. E. (1962) Migration of terrestrial arthropods in relation to habitat.Biol. Rev. 37: 171–214.Google Scholar
  52. Southwood, T. R. E. (1977) Habitat, the templet for ecological strategies.J. Anim. Ecol. 46: 337–365.Google Scholar
  53. Southwood, T. R. E. and D. Leston (1959)Land and water bugs of the British Isles. F. Warne. London.Google Scholar
  54. Tallamy, D. W. and R. F. Denno (1981) Alternative life history patterns in risky environments: an example from lacebugs. pp. 129–147.In R. F. Denno and H. Dingle (eds.)Insect life history patterns: habitat and geographic variation. Springer, New York.Google Scholar
  55. Taylor, C. E., J. R. Powell, V. Kekic, M. Andjelkovic and H. Burla (1984) Dispersal rates of species of theDrosophila obscura group: Implications for population structure.Evolution 38: 1397–1401.CrossRefGoogle Scholar
  56. Vepsäläinen, K. (1978) Wing dimorphism and diapause inGerris: determination and adaptive significance. pp. 218–253.In H. Dingle (ed.)Evolution of insect migration and diapause. Springer, Berlin.Google Scholar
  57. Wagner, W. L., D. R. Herbst and S. H. Sohmer (1990)Manual of the flowering plants of Hawaii. Vol. 1 and 2. Bishop Museum Special Publication 83. University of Hawaii Press and Bishop Museum Press. Honolulu.Google Scholar
  58. Waloff, N. (1973) Dispersal by flight of leafhoppers (Auchenorrhyncha: Homoptera).J. Appl. Ecol. 10: 705–730.CrossRefGoogle Scholar
  59. Waloff, N. (1983) Absence of wing polymorphism in the arboreal, phytophagous species of some taxa of temperate Hemiptera: An hypothesis.Ecol. Entomol. 8: 229–232.Google Scholar
  60. Wilson, S. W., C. Mitter, R. F. Denno and M. R. Wilson (1994) Evolutionary patterns of host plant use by delphacid planthoppers and their relatives. pp. 7–113.In R. F. Denno and T. J. Perfect (eds.)Planthoppers: their ecology and management. Chapman & Hall, New York.Google Scholar
  61. Zimmerman, E. C. (1948)Insects of Hawaii, Volume 4, Homoptera: Auchenorrhyncha. University of Hawaii Press, Honolulu.Google Scholar

Copyright information

© Society of Population Ecology 1994

Authors and Affiliations

  • Robert F. Denno
    • 1
  1. 1.Department of EntomologyUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations