Ukrainian Mathematical Journal

, Volume 50, Issue 5, pp 709–718 | Cite as

Invariant symmetric restrictions of a self-adjoint operator. I

  • M. E. Dudkin
Article

Abstract

We prove necessary and sufficient conditions of the S-invariance of a subset dense in a separable Hilbert space H.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965). English translation: Amer. Math. Soc. Transi., Vol. 17, Providence (1968).Google Scholar
  2. 2.
    Yu. M. Berezanskii, Self-Adjoint Operators in Spaces of Functions of Infinitely Many Variables [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  3. 3.
    Yu. M. Berezanskii, G. F. Us, and Z. G. Sheftel’, Functional Analysis [in Russian], Vyshcha Shkola, Kiev (1990). English translation: Birkhäuser, Basel-Boston-Berlin (1996).Google Scholar
  4. 4.
    V. I. Gorbachuk and M. L. Gorbachuk, Boundary-Value Problems for Differential Operator Equations [in Russian], Naukova Dumka, Kiev (1984).MATHGoogle Scholar
  5. 5.
    V. D. Koshmanenko, Singular Bilinear Forms in the Theory of Perturbations of Self-Adjoint Operators [in Russian], Naukova Dumka (1993).Google Scholar
  6. 6.
    V. D. Koshmanenko, “Singular operators and forms in a scale of Hilbert spaces,” in: Methods of Functional Analysis in Problems of Mathematical Physics, Kiev (1992), pp. 73–87.Google Scholar
  7. 7.
    V. D. Koshmanenko, “Perturbations of self-adjoint operators by singular bilinear forms,” Ukr. Mat. Zh., 41, No. 1, 3–19 (1989).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    V. D. Koshmanenko, Dense Subspaces in A-Scale of Hilbert Spaces [in Russian], Preprint No. 835, ITP UWr (1993).Google Scholar
  9. 9.
    F. Riesz and B. Sz.-Nagy, Lecons D’analyse Fonctionnelle, Akadémiai Kiadó, Budapest (1972).Google Scholar
  10. 10.
    Yu. M. Berezanskii and Yu. G. Kondrat’ev, Spectral Methods in Infinite-Dimensional Analysis [in Russian], Naukova Dumka, Kiev (1988). English translation: Kluwer, Dordrecht (1995).Google Scholar
  11. 11.
    M. E. Dudkin, Hermitian Invariant Restrictions of Self-Adjoint Operators [in Russian], Preprint No. 94.31, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1994).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • M. E. Dudkin
    • 1
  1. 1.Ukrainian National Technical University “Kiev Polytechnic Institute,”Kiev

Personalised recommendations