Medical & Biological Engineering & Computing

, Volume 37, Issue 6, pp 727–732 | Cite as

Experimental analysis of the human perception threshold of a DC electric field

  • H. Odagiri-ShimizuEmail author
  • K. Shimizu


To study the biological effects of extremely low frequency (ELF) electric fields, a fundamental study is conducted of the human perception threshold of an electric field. The perception threshold is measured with human subjects, and the results are analysed. It is clear that field perception is based on the movement of hair and not on other sensations. Variance in the perception threshold and its causes are investigated. The perception threshold decreases by almost 30% as the relative humidity increases from 50 to 90%. The perception threshold is also dependent on the physical condition (length and density) of the hair and the psychological condition (degree of awareness) of the subject. The dependence on these is much smaller than that on relative humidity. The cause of the gender difference in the threshold is ascribed to the difference in the physical condition of the hair. Through this study, some factors to be taken into account for the safety standard are made clear.


Human effect Safety standard DC electric field Detection threshold Electromagnetic compatibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cabanes, J., andGary, C. (1981): ‘La perception directe du champ electrique’. Proc. Int. Conf. Large High Voltage Electric Systems, CIGRE, Paris, pp. 1–6Google Scholar
  2. Carstensen, E. L. (1987): ‘Biological effects of trasmission line fields’ (Elsevier, New York)Google Scholar
  3. Clairmont, B. A., Johnson, G. B., Zaffanella, L. E., andZelingher, S. (1989): ‘The effect of HVAC-HVDC line separation in a hybrid corridor’, IEEETrans. Power Appar. Syst.,4, pp. 1338–1350Google Scholar
  4. Deno, D., andZaffanella, L. (1982): ‘Field effects of overhead transmission lines and stations’,in Transmission Line Book 345kV and above, 2nd edn’ (Electric Power Research Institute, Palo Alto, CA) pp. 374–379Google Scholar
  5. Fitzgerald, K., Mogan, M. G. andNair, I. (1990): ‘Electromagnetic fields: the jury's still out’,IEEE Spectrum,27, pp. 22–35CrossRefGoogle Scholar
  6. IEE Japan (1995): ‘Biological effects of electromagnetic fields and measurement’ (Corona Publishing)Google Scholar
  7. ICNIRP (1998): ‘Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields, (up to 300 GHz)’,Health Physics,74, pp. 494–522Google Scholar
  8. Kato, M., Ohta, S., Kobayashi, T., andMatsumoto, G. (1986): ‘Response of sensory receptors of the cat's hindlimb to a transient step-function DC electric fields’,Bioelectromagn.,7, pp. 395–404CrossRefGoogle Scholar
  9. Kato, M., Ohta, S., Shimizu, K., Tsuchida, Y., andMatsumoto, G. (1989): ‘Detection-threshold of 50-Hz electric fields by human subjects’,Bioelectromagn.,10, pp. 319–327CrossRefGoogle Scholar
  10. Kobayashi, T., Shimizu, K., andMatsumoto, G. (1984): ‘Numerical calculation of induced currents in humans and experimental animals exposed to ELF electric fields’,Proc. Int. Symp. EMC,1, pp. 560–564Google Scholar
  11. Lerner, E. J. (1984): ‘Biological effects of electromagnetic fields’,IEEE Spectrum,21, pp. 57–69Google Scholar
  12. Martinsen, O. G., Grimnes, S., andKongshaug, E. S. (1997): ‘Dielectric properties of some keratinised tissues. Part 2: Human hair’,Med. Biol. Eng. Comput.,35, pp. 177–180CrossRefGoogle Scholar
  13. Matsumoto, G., andShimizu, K. (1994): ‘Biological effects of ELF electric fields— Historical review on bioengineering studies in Japan’,IEICE Trans. Commun.,E77-B, pp. 684–692Google Scholar
  14. Matsumoto, G., Kato, M., andShimizu, K. (1986): ‘Forschungs-aktivitaten in Japan uber Biologische Wirkungen Elektromagnetischer Felder’,in ‘Ersten Hilfe und Behandlung von Unfallen durch elektrischen Strom’, pp. 563–597Google Scholar
  15. Mogan, M. G., Florig, H. K., Nair, I., andLincoln, D. (1985): ‘Powerline fields and human health’,IEEE Spectrum,22, pp. 62–68Google Scholar
  16. Odagiri, H., Shimizu, K., andMatsumoto, G. (1994): ‘Fundamental analysis on perception mechanism of ELF electric field’,IEICE Trans. Commun.,E77-B, pp. 719–724Google Scholar
  17. Reilly, J. P. (1992): ‘Electrical stimulation and electropathology’ (Cambridge University Press, Cambridge)Google Scholar
  18. Sagan, P. M., Stell, M. E., Bryan, G. K., andAdey, W. R. (1987): ‘Detection of 60-Hertz vertical electric fields by rats’,Bioelectromagn.,8, pp. 303–313CrossRefGoogle Scholar
  19. Sakamoto, M., Odagiri, H., Misawa, K., Arisawa, J., andShimizu, K. (1996): ‘Fundamental study on biological effects of strong electric field (part 3)— Dependence of detection threshold on different parameters’,IECE Technical Report,EMCJ96-52, pp. 29–36Google Scholar
  20. Shimizu, K., Endo, H., andMatsumoto, G. (1988): ‘Visualization of electric fields around a biological body’,IEEE Trans.,BME-35, pp. 296–302Google Scholar
  21. Shimizu, K., Endo, H., andMatsumoto, G. (1989): ‘Fundamental study on measurement of ELF electric field at biological body surfaces’,IEEE Trans. Instrum. Meas.,38, pp. 779–784CrossRefGoogle Scholar
  22. Stern, S., Laties, V. G., Stancampiano, C. V., Cox, C., andLorge, J. O. (1983): ‘Behavioral detection of 60-Hz electric fields by rats’,Bioelectromagn.,4, pp. 215–247CrossRefGoogle Scholar
  23. Stern, S., andLaties, V. G. (1985): ‘60-Hz electric fields: detection by female rats’,Bioelectromagn.,6, pp. 99–103CrossRefGoogle Scholar
  24. Weigel, R. J., Jaffe, R. A., Lundstrom, D. L., Forsythe, W. C., andAnderson, L. E. (1987): ‘Stimulation of cutaneous mechan-oreceptors by 60-Hz electric fields’,Bioelectromagn.,8, pp. 337–350CrossRefGoogle Scholar
  25. WHO (1984): ‘Environmental health criteria 35’. (Geneva)Google Scholar

Copyright information

© IFMBE 1999

Authors and Affiliations

  1. 1.Hokkaido Institute of TechnologySapporoJapan
  2. 2.Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations